skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ghost translation: an end-to-end ghost imaging approach based on the transformer network
Artificial intelligence has recently been widely used in computational imaging. The deep neural network (DNN) improves the signal-to-noise ratio of the retrieved images, whose quality is otherwise corrupted due to the low sampling ratio or noisy environments. This work proposes a new computational imaging scheme based on the sequence transduction mechanism with the transformer network. The simulation database assists the network in achieving signal translation ability. The experimental single-pixel detector’s signal will be ‘translated’ into a 2D image in an end-to-end manner. High-quality images with no background noise can be retrieved at a sampling ratio as low as 2%. The illumination patterns can be either well-designed speckle patterns for sub-Nyquist imaging or random speckle patterns. Moreover, our method is robust to noise interference. This translation mechanism opens a new direction for DNN-assisted ghost imaging and can be used in various computational imaging scenarios.  more » « less
Award ID(s):
2013771
PAR ID:
10385762
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
30
Issue:
26
ISSN:
1094-4087; OPEXFF
Format(s):
Medium: X Size: Article No. 47921
Size(s):
Article No. 47921
Sponsoring Org:
National Science Foundation
More Like this
  1. The generation of speckle patterns via random matrices, statistical definitions, or apertures may not always result in optimal outcomes. Issues such as correlation fluctuations in low ensemble numbers and diffraction in long-distance propagation can arise. Instead of improving results of specific applications, our solution is catching deep correlations of patterns with the framework, Speckle-Net, which is fundamental and universally applicable to various systems. We demonstrate this in computational ghost imaging (CGI) and structured illumination microscopy (SIM). In CGI with extremely low ensemble number, it customizes correlation width and minimizes correlation fluctuations in illuminating patterns to achieve higher-quality images. It also creates non-Rayleigh nondiffracting speckle patterns only through a phase mask modulation, which overcomes the power loss in the traditional ring-aperture method. Our approach provides new insights into the nontrivial speckle patterns and has great potential for a variety of applications including dynamic SIM, X-ray and photo-acoustic imaging, and disorder physics. 
    more » « less
  2. Coherent images of scattering materials, such as biological tissue, typically exhibit high-frequency intensity fluctuations known as speckle. These seemingly noise-like speckle patterns have strong statistical correlation properties that have been successfully utilized by computational imaging systems in different application areas. Unfortunately, these properties are not well-understood, in part due to the difficulty of simulating physically-accurate speckle patterns. In this work, we propose a new model for speckle statistics based on a single scattering approximation, that is, the assumption that all light contributing to speckle correlation has scattered only once. Even though single-scattering models have been used in computer vision and graphics to approximate intensity images due to scattering, such models usually hold only for very optically thin materials, where light indeed does not scatter more than once. In contrast, we show that the single-scattering model for speckle correlation remains accurate for much thicker materials. We evaluate the accuracy of the single-scattering correlation model through exhaustive comparisons against an exact speckle correlation simulator. We additionally demonstrate the model's accuracy through comparisons with real lab measurements. We show, that for many practical application settings, predictions from the single-scattering model are more accurate than those from other approximate models popular in optics, such as the diffusion and Fokker-Planck models. We show how to use the single-scattering model to derive closed-form expressions for speckle correlation, and how these expressions can facilitate the study of statistical speckle properties. In particular, we demonstrate that these expressions provide simple explanations for previously reported speckle properties, and lead to the discovery of new ones. Finally, we discuss potential applications for future computational imaging systems. 
    more » « less
  3. A statistical treatment of speckle correlations as a function of the position of a moving object is shown to provide access to object information through thick and heavily scattering random media. Experiments for a patch-like object of varying size and for varying degree of background scatter are explained using a model, and an experimental study allows evaluation of key attributes. Given a sufficient signal-to-noise ratio, adequate coherence, and developed field statistics, measured speckle intensity patterns from a set of object positions can allow high-resolution imaging deep into an obscuring medium and the medium's scattering strength can be gauged quantitatively with calibration. This enables new opportunities in application domains such as optical sensing, material inspection, and deep tissue in vivo imaging. 
    more » « less
  4. Deep neural networks have been shown to be effective adaptive beamformers for ultrasound imaging. However, when training with traditional L p norm loss functions, model selection is difficult because lower loss values are not always associated with higher image quality. This ultimately limits the maximum achievable image quality with this approach and raises concerns about the optimization objective. In an effort to align the optimization objective with the image quality metrics of interest, we implemented a novel ultrasound-specific loss function based on the spatial lag-one coherence and signal-to-noise ratio of the delayed channel data in the short-time Fourier domain. We employed the R-Adam optimizer with look ahead and cyclical learning rate to make the training more robust to initialization and local minima, leading to better model performance and more reliable convergence. With our custom loss function and optimization scheme, we achieved higher contrast-to-noise-ratio, higher speckle signal-to-noise-ratio, and more accurate contrast ratio reconstruction than with previous deep learning and delay-and-sum beamforming approaches. 
    more » « less
  5. The need for high-speed imaging in applications such as biomedicine, surveillance, and consumer electronics has called for new developments of imaging systems. While the industrial effort continuously pushes the advance of silicon focal plane array image sensors, imaging through a single-pixel detector has gained significant interest thanks to the development of computational algorithms. Here, we present a new imaging modality, deep compressed imaging via optimized-pattern scanning, which can significantly increase the acquisition speed for a single-detector-based imaging system. We project and scan an illumination pattern across the object and collect the sampling signal with a single-pixel detector. We develop an innovative end-to-end optimized auto-encoder, using a deep neural network and compressed sensing algorithm, to optimize the illumination pattern, which allows us to reconstruct faithfully the image from a small number of measurements, with a high frame rate. Compared with the conventional switching-mask-based single-pixel camera and point-scanning imaging systems, our method achieves a much higher imaging speed, while retaining a similar imaging quality. We experimentally validated this imaging modality in the settings of both continuous-wave illumination and pulsed light illumination and showed high-quality image reconstructions with a high compressed sampling rate. This new compressed sensing modality could be widely applied in different imaging systems, enabling new applications that require high imaging speeds. 
    more » « less