skip to main content


This content will become publicly available on April 30, 2024

Title: Tutorial: Causal AI for Web and Health Care.
Improving the performance and explanations of ML algorithms is a priority for adoption by humans in the real world. In critical domains such as healthcare, such technology has significant potential to reduce the burden on humans and considerably reduce manual assessments by providing quality assistance at scale. In today’s data-driven world, artificial intelligence (AI) systems are still experiencing issues with bias, explainability, and human-like reasoning and interpretability. Causal AI is the technique that can reason and make human-like choices making it possible to go beyond narrow Machine learning-based techniques and can be integrated into human decision-making. It also offers intrinsic explainability, new domain adaptability, bias free predictions, and works with datasets of all sizes. In this tutorial of type lecture style, we detail how a richer representation of causality in AI systems using a knowledge graph (KG) based approach is needed for intervention and counterfactual reasoning (Figure 1), how do we get to model-based and domain explainability, how causal representations helps in web and health care.  more » « less
Award ID(s):
2133842 2113350 2110926 2007976
NSF-PAR ID:
10429248
Author(s) / Creator(s):
Date Published:
Journal Name:
Companion Proceedings of the ACM Web Conference
Page Range / eLocation ID:
648 to 658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Explainability has emerged as a critical AI research objective, but the breadth of proposed methods and application domains suggest that criteria for explanation vary greatly. In particular, what counts as a good explanation, and what kinds of explanation are computationally feasible, has become trickier in light of oqaque “black box” systems such as deep neural networks. Explanation in such cases has drifted from what many philosophers stipulated as having to involve deductive and causal principles to mere “interpretation,” which approximates what happened in the target system to varying degrees. However, such post hoc constructed rationalizations are highly problematic for social robots that operate interactively in spaces shared with humans. For in such social contexts, explanations of behavior, and, in particular, justifications for violations of expected behavior, should make reference to socially accepted principles and norms. In this article, we show how a social robot’s actions can face explanatory demands for how it came to act on its decision, what goals, tasks, or purposes its design had those actions pursue and what norms or social constraints the system recognizes in the course of its action. As a result, we argue that explanations for social robots will need to be accurate representations of the system’s operation along causal, purposive, and justificatory lines. These explanations will need to generate appropriate references to principles and norms—explanations based on mere “interpretability” will ultimately fail to connect the robot’s behaviors to its appropriate determinants. We then lay out the foundations for a cognitive robotic architecture for HRI, together with particular component algorithms, for generating explanations and engaging in justificatory dialogues with human interactants. Such explanations track the robot’s actual decision-making and behavior, which themselves are determined by normative principles the robot can describe and use for justifications. 
    more » « less
  2. Current AI systems lack several important human capabilities, such as adaptability, generalizability, selfcontrol, consistency, common sense, and causal reasoning. We believe that existing cognitive theories of human decision making, such as the thinking fast and slow theory, can provide insights on how to advance AI systems towards some of these capabilities. In this paper, we propose a general architecture that is based on fast/slow solvers and a metacognitive component. We then present experimental results on the behavior of an instance of this architecture, for AI systems that make decisions about navigating in a constrained environment. We show how combining the fast and slow decision modalities, which can be implemented by learning and reasoning components respectively, allows the system to evolve over time and gradually pass from slow to fast thinking with enough experience, and that this greatly helps in decision quality, resource consumption, and efficiency. 
    more » « less
  3. Currently, there is a surge of interest in fair Artificial Intelligence (AI) and Machine Learning (ML) research which aims to mitigate discriminatory bias in AI algorithms, e.g., along lines of gender, age, and race. While most research in this domain focuses on developing fair AI algorithms, in this work, we examine the challenges which arise when humans and fair AI interact. Our results show that due to an apparent conflict between human preferences and fairness, a fair AI algorithm on its own may be insufficient to achieve its intended results in the real world. Using college major recommendation as a case study, we build a fair AI recommender by employing gender debiasing machine learning techniques. Our offline evaluation showed that the debiased recommender makes fairer career recommendations without sacrificing its accuracy in prediction. Nevertheless, an online user study of more than 200 college students revealed that participants on average prefer the original biased system over the debiased system. Specifically, we found that perceived gender disparity is a determining factor for the acceptance of a recommendation. In other words, we cannot fully address the gender bias issue in AI recommendations without addressing the gender bias in humans. We conducted a follow-up survey to gain additional insights into the effectiveness of various design options that can help participants to overcome their own biases. Our results suggest that making fair AI explainable is crucial for increasing its adoption in the real world. 
    more » « less
  4. With the rise of AI, algorithms have become better at learning underlying patterns from the training data including ingrained social biases based on gender, race, etc. Deployment of such algorithms to domains such as hiring, healthcare, law enforcement, etc. has raised serious concerns about fairness, accountability, trust and interpretability in machine learning algorithms. To alleviate this problem, we propose D-BIAS, a visual interactive tool that embodies human-in-the-loop AI approach for auditing and mitigating social biases from tabular datasets. It uses a graphical causal model to represent causal relationships among different features in the dataset and as a medium to inject domain knowledge. A user can detect the presence of bias against a group, say females, or a subgroup, say black females, by identifying unfair causal relationships in the causal network and using an array of fairness metrics. Thereafter, the user can mitigate bias by refining the causal model and acting on the unfair causal edges. For each interaction, say weakening/deleting a biased causal edge, the system uses a novel method to simulate a new (debiased) dataset based on the current causal model while ensuring a minimal change from the original dataset. Users can visually assess the impact of their interactions on different fairness metrics, utility metrics, data distortion, and the underlying data distribution. Once satisfied, they can download the debiased dataset and use it for any downstream application for fairer predictions. We evaluate D-BIAS by conducting experiments on 3 datasets and also a formal user study. We found that D-BIAS helps reduce bias significantly compared to the baseline debiasing approach across different fairness metrics while incurring little data distortion and a small loss in utility. Moreover, our human-in-the-loop based approach significantly outperforms an automated approach on trust, interpretability and accountability. 
    more » « less
  5. The use of AI-based decision aids in diverse domains has inspired many empirical investigations into how AI models’ decision recommendations impact humans’ decision accuracy in AI-assisted decision making, while explorations on the impacts on humans’ decision fairness are largely lacking despite their clear importance. In this paper, using a real-world business decision making scenario—bidding in rental housing markets—as our testbed, we present an experimental study on understanding how the bias level of the AI-based decision aid as well as the provision of AI explanations affect the fairness level of humans’ decisions, both during and after their usage of the decision aid. Our results suggest that when people are assisted by an AI-based decision aid, both the higher level of racial biases the decision aid exhibits and surprisingly, the presence of AI explanations, result in more unfair human decisions across racial groups. Moreover, these impacts are partly made through triggering humans’ “disparate interactions” with AI. However, regardless of the AI bias level and the presence of AI explanations, when people return to make independent decisions after their usage of the AI-based decision aid, their decisions no longer exhibit significant unfairness across racial groups.

     
    more » « less