skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Use It-No Need to Shake It!: Accurate Implicit Authentication for Everyday Objects with Smart Sensing
Implicit authentication for traditional objects, such as doors and dumbbells, has rich applications but is rarely studied. An ongoing trend is that traditional objects are retrofitted to smart environments; for instance, a contact sensor is attached to a door to detect door opening (but cannot tell "who is opening the door"). We present the first accurate implicit-authentication system for retrofitted everyday objects, named MoMatch. It makes an authentication decision based on a single natural object use, unlike prior work that requires shaking objects. MoMatch is built on the observation that an object has a motion typically because a human hand moves it; thus, the object's motion and the legitimate user's hand movement should correlate. The main challenge is, given the small amount of data collected during one object use, how to measure the correlation accurately. We convert the correlation measurement problem into an image comparison problem and resolve it using neural networks successfully. MoMatch does not need to profile the user's biometric information and is resilient to mimicry attacks.  more » « less
Award ID(s):
1856380 2144669 2107093 2016415 2309477 2309550
PAR ID:
10386168
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Volume:
6
Issue:
3
ISSN:
2474-9567
Page Range / eLocation ID:
1 to 25
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Modeling human behaviors in contextual environments has a wide range of applications in character animation, embodied AI, VR/AR, and robotics. In real-world scenarios, humans frequently interact with the environment and manipulate various objects to complete daily tasks. In this work, we study the problem of full-body human motion synthesis for the manipulation of large-sized objects. We propose Object MOtion guided human MOtion synthesis (OMOMO), a conditional diffusion framework that can generate full-body manipulation behaviors from only the object motion. Since naively applying diffusion models fails to precisely enforce contact constraints between the hands and the object, OMOMO learns two separate denoising processes to first predict hand positions from object motion and subsequently synthesize full-body poses based on the predicted hand positions. By employing the hand positions as an intermediate representation between the two denoising processes, we can explicitly enforce contact constraints, resulting in more physically plausible manipulation motions. With the learned model, we develop a novel system that captures full-body human manipulation motions by simply attaching a smartphone to the object being manipulated. Through extensive experiments, we demonstrate the effectiveness of our proposed pipeline and its ability to generalize to unseen objects. Additionally, as high-quality human-object interaction datasets are scarce, we collect a large-scale dataset consisting of 3D object geometry, object motion, and human motion. Our dataset contains human-object interaction motion for 15 objects, with a total duration of approximately 10 hours. 
    more » « less
  2. Mobile manipulation tasks such as opening a door, pulling open a drawer, or lifting a toilet lid require constrained motion of the end-effector under environmental and task constraints. This, coupled with partial information in novel environments, makes it challenging to employ classical motion planning approaches at test time. Our key insight is to cast it as a learning problem to leverage past experience of solving similar planning problems to directly predict motion plans for mobile manipulation tasks in novel situations at test time. To enable this, we develop a simulator, ArtObjSim, that simulates articulated objects placed in real scenes. We then introduce SeqIK+θ0, a fast and flexible representation for motion plans. Finally, we learn models that use SeqIK+θ0 to quickly predict motion plans for articulating novel objects at test time. Experimental evaluation shows improved speed and accuracy at generating motion plans than pure search-based methods and pure learning methods. 
    more » « less
  3. Constraining contacts to remain fixed on an object during manipulation limits the potential workspace size, as motion is subject to the hand’s kinematic topology. Finger gaiting is one way to alleviate such restraints. It allows contacts to be freely broken and remade so as to operate on different manipulation manifolds. This capability, however, has traditionally been difficult or impossible to practically realize. A finger gaiting system must simultaneously plan for and control forces on the object while maintaining stability during contact switching. This letter alleviates the traditional requirement by taking advantage of system compliance, allowing the hand to more easily switch contacts while maintaining a stable grasp. Our method achieves complete SO(3) finger gaiting control of grasped objects against gravity by developing a manipulation planner that operates via orthogonal safe modes of a compliant, underactuated hand absent of tactile sensors or joint encoders. During manipulation, a low-latency 6D pose object tracker provides feedback via vision, allowing the planner to update its plan online so as to adaptively recover from trajectory deviations. The efficacy of this method is showcased by manipulating both convex and non-convex objects on a real robot. Its robustness is evaluated via perturbation rejection and long trajectory goals. To the best of the authors’ knowledge, this is the first work that has autonomously achieved full SO(3) control of objects within-hand via finger gaiting and without a support surface, elucidating a valuable step towards realizing true robot in-hand manipulation capabilities. 
    more » « less
  4. We introduce a novel approach to manipulate articulated objects with ambiguities, such as opening a door, in which multi-modality and occlusions create ambiguities about the opening side and direction. Multi-modality occurs when the method to open a fully closed door (push, pull, slide) is uncertain, or the side from which it should be opened is uncertain. Occlusions further obscure the door’s shape from certain angles, creating further ambiguities during the occlusion. To tackle these challenges, we propose a history-aware diffusion network that models the multi-modal distribution of the articulated object and uses history to disambiguate actions and make stable predictions under occlusions. Experiments and analysis demonstrate the state-of-art performance of our method and specifically improvements in ambiguity-caused failure modes. Our project website is available at https://flowbothd.github.io/. 
    more » « less
  5. In this paper we learn to segment hands and hand-held objects from motion. Our system takes a single RGB image and hand location as input to segment the hand and hand-held object. For learning, we generate responsibility maps that show how well a hand’s motion explains other pixels’ motion in video. We use these responsibility maps as pseudo-labels to train a weakly-supervised neural network using an attention-based similarity loss and contrastive loss. Our system outperforms alternate methods, achieving good performance on the 100DOH, EPIC-KITCHENS, and HO3D datasets. 
    more » « less