The bistable fluttering response of heavy inverted flags with different aspect ratios ( $AR$ ) is investigated to determine how the vortical structures affect the intermittent vibration response of the flag. A heavy inverted flag in a uniform flow may exhibit several response modes; amongst them are three major modes that occur over an extended velocity range: stationary, large-scale periodic oscillation and one-sided deflected modes. Significant hysteretic bistability is observed at the transition between these modes for all $AR$ , which is notably different from the conventional flag vibration with a fixed leading edge and free trailing edge where no hysteresis is observed at the lower $AR$ limit ( $AR<1$ ). The difference is associated with the distinct roles of vortices around the flag. Experiments with flags made of spring steel are conducted in a wind tunnel, where the flow speed is steadily increased and later decreased to obtain different oscillatory modes of the heavy inverted flags. The experimental results are used to validate the numerical model of the same problem. It is found that different critical velocities exist for increasing and decreasing flow velocities, and there is a sustained hysteresis for all $AR$ controlled by the initiation threshold and growth of the leading-edge and side-edge vortices. The effect of the vortices in the bistable oscillation regime is quantified by formulating a modal force partitioning approach. It is shown that $AR$ can significantly alter the static and dynamic vortex interaction with the flexible plate, thereby changing the flag's hysteresis behaviour and bistable response.
more »
« less
Flapping dynamics of an inverted flag behind a cylinder
Abstract The inverted flag configuration is inspired by biological structures (e.g. leaves on a tree branch), showing rich dynamics associated with instabilities at lower flow speeds than the regular flag configuration. In the biological counterpart, the arrangement of leaves and twigs on foliage creates a complex interacting environment that promotes certain dynamic fluttering modes. While enabling a large amplitude response for reduced flow speeds is advantageous in emerging fields such as energy harvesting, still, little is known about the consequence of such interactions. In this work, we numerically study the canonical bio-inspired problem of the flow-structural interaction of a 2D inverted flag behind a cylindrical bluff body, mimicking a leaf behind a tree branch, to investigate its distinct fluttering regimes. The separation distance between the cylinder and flag is gradually modified to determine the effective distance beyond which small-amplitude or large-amplitude flapping occurs for different flow velocities. It is shown that the flag exhibits a periodic large amplitude−low frequency response mode when the cylinder is placed at a sufficiently large distance in front of the flag. At smaller distances, when the flag is within the immediate wake of the cylinder, the flag undergoes a high frequency−small amplitude response. Finally, the flag’s piezoelectric power harvesting capability is investigated numerically and experimentally for varying geometrical and electrical parameters associated with these two conditions. Two separate optimal response modes with the highest energy output have also been identified.
more »
« less
- Award ID(s):
- 1943810
- PAR ID:
- 10386366
- Date Published:
- Journal Name:
- Bioinspiration & Biomimetics
- Volume:
- 17
- Issue:
- 6
- ISSN:
- 1748-3182
- Page Range / eLocation ID:
- 065011
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Flag flutter frequently features a marked difference between the onset speed of flutter and the speed below which flutter stops. The hysteresis tends to be especially large in experiments as opposed to simulations. This phenomenon has been ascribed to inherent imperfections of flatness in experimental samples, which are thought to inhibit the onset of flutter but have a lesser effect once a flag is already fluttering. In this work, we present an experimental confirmation for this explanation through motion tracking. We also visualize the wake to assess the potential contribution of discrete vortex shedding to hysteresis. We then mould our understanding of the mechanism of bistability and additional observations on flag flutter into a novel, observation-based, semiempirical model for flag flutter in the form of a single ordinary differential equation. Despite its simplicity, the model successfully reproduces key features of the physical system such as bistability, sudden transitions between non-fluttering and fluttering states, amplitude growth and frequency growth.more » « less
-
Vortex-induced vibration (VIV) has emerged as a promising method for small-scale energy harvesting. This research explores the key parameters affecting VIV in a cylinder-cantilever beam system within a Reynolds number range of 400–7500. The investigation focused on identifying the airflow velocity thresholds that initiate vibrations, measuring peak vibration amplitudes, and determining the critical airflow velocities where vibrations are maximized. By systematically varying mass, stiffness, and cylinder diameter, we examined their distinct effects on system behavior. Key outcomes indicate that larger cylinder diameters lead to increased vibration amplitudes and broader operational bandwidths, while adding mass reduces the bandwidth. Higher stiffness boosts both the maximum amplitude and bandwidth, shifting these to higher airflow velocities. The lock-in regime was observed to initiate at a Strouhal number (St) between 0.175 and 0.197, with vibration cessation occurring at an approximately consistent Strouhal number for each cylinder diameter. The peak vibration amplitude occurred at St ≈ 0.16, with fluctuations of less than 5% across all models. Additionally, the wake structure behind the cylinder and its behavior across the vibration bandwidth were analyzed using flow visualization techniques. A hot-wire anemometer positioned downstream measured velocity fluctuations from vortex shedding. These findings offer practical insights for optimizing VIV-based energy harvesting, linking wake behavior to amplitude response and power output. This study contributes to the broader understanding of VIV energy harvesters and provides a foundation for validating numerical models and enhancing the efficiency of sustainable energy systems.more » « less
-
Abstract The spanwise undulated cylinder geometry inspired by seal whiskers has been shown to alter shedding frequency and reduce fluid forces significantly compared to smooth cylindrical geometry. Prior research has parameterized the whisker-inspired geometry and demonstrated the relevance of geometric variations on force reduction properties. Among the geometric parameters, undulation wavelength was identified as a significant contributor to forcing changes. To analyze the effect of undulation wavelength, a thorough investigation isolating changes in wavelength is performed to expand upon previous research that parameterized whisker-inspired geometry and the relevance of geometric variations on the force reduction properties. A set of five whisker-inspired models of varying wavelength are computationally simulated at a Reynolds number of 250 and compared with an equivalent aspect ratio smooth elliptical cylinder. Above a critical non-dimensional value, the undulation wavelength reduces the amplitude and frequency of vortex shedding accompanied by a reduction in oscillating lift force. Frequency shedding is tied to the creation of wavelength-dependent vortex structures which vary across the whisker span. These vortices produce distinct shedding modes in which the frequency and phase of downstream structures interact to decrease the oscillating lift forces on the whisker model with particular effectiveness around the wavelength values typically found in nature. The culmination of these location-based modes produces a complex and spanwise-dependent lift frequency spectra at those wavelengths exhibiting maximum force reduction. Understanding the mechanisms of unsteady force reduction and the relationship between undulation wavelength and frequency spectra is critical for the application of this geometry to vibration tuning and passive flow control for vortex-induced vibration (VIV) reduction.more » « less
-
Modal analysis on micro-vortex generator (MVG)-controlled supersonic flow at different Mach numbers is performed in this paper. The purpose of this investigation is to clarify the different properties of streamwise and ring-like vortical modes, and the effects of different Mach numbers on these modes, to further understand the vortical structures as they travel from MVG down to the shock wave/boundary-layer interaction (SWBLI) region. To this end, a high order and high resolution large eddy simulation (LES) was carried out, which identified the vortical structures behind the MVG and in the shock wave/boundary-layer interaction (SWBLI) region in the supersonic ramp flow with flow speeds of three different Mach numbers 1.5, 2.0, and 2.5. The proper orthogonal decomposition (POD) then was adopted to investigate the modes of the fluctuation flow field. It emerged that the streamwise and ring-like vortical modes were disparate in energy distribution, structural order, frequency and amplitude. Furthermore, it showed that as the Mach number increased, the energy of the streamwise modes increased while the opposite was true for ring-like modes; and the streamwise modal structures were altered more significantly than the ring-like modes, and the frequency of each mode scarcely varied. It was also found that the streamwise vortices absorbed energy from the ring-like vortices while they traveled from the MVG down to the SWBLI region, but the dominant frequency of each mode rarely changed during this process.more » « less
An official website of the United States government

