skip to main content


Title: Snapping for high-speed and high-efficient butterfly stroke–like soft swimmer
Bistable soft swimmers can achieve both high-speed and high-efficient performances comparable to their biological counterparts.  more » « less
Award ID(s):
2126072 2005374
PAR ID:
10386511
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Science Advances
Volume:
8
Issue:
46
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. High-entropy alloys are a new type of material developed in recent years. It breaks the traditional alloy-design conventions and has many excellent properties. High-pressure treatment is an effective means to change the structures and properties of metal materials. The pressure can effectively vary the distance and interaction between molecules or atoms, so as to change the bonding mode, and form high-pressure phases. These new material states often have different structures and characteristics, compared to untreated metal materials. At present, high-pressure technology is an effective method to prepare alloys with unique properties, and there are many techniques that can achieve high pressures. The most commonly used methods include high-pressure torsion, large cavity presses and diamond-anvil-cell presses. The materials show many unique properties under high pressures which do not exist under normal conditions, providing a new approach for the in-depth study of materials. In this paper, high-pressure (HP) technologies applied to high-entropy alloys (HEAs) are reviewed, and some possible ways to develop good properties of HEAs using HP as fabrication are introduced. Moreover, the studies of HEAs under high pressures are summarized, in order to deepen the basic understanding of HEAs under high pressures, which provides the theoretical basis for the application of high-entropy alloys. 
    more » « less
  2. Abstract

    Refractory high‐entropy alloys (RHEAs) show promising applications at high temperatures. However, achieving high strengths at elevated temperatures above 1173K is still challenging due to heat softening. Using intrinsic material characteristics as the alloy‐design principles, a single‐phase body‐centered‐cubic (BCC) CrMoNbV RHEA with high‐temperature strengths (beyond 1000 MPa at 1273 K) is designed, superior to other reported RHEAs as well as conventional superalloys. The origin of the high‐temperature strength is revealed by in situ neutron scattering, transmission‐electron microscopy, and first‐principles calculations. The CrMoNbV's elevated‐temperature strength retention up to 1273 K arises from its large atomic‐size and elastic‐modulus mismatches, the insensitive temperature dependence of elastic constants, and the dominance of non‐screw character dislocations caused by the strong solute pinning, which makes the solid‐solution strengthening pronounced. The alloy‐design principles and the insights in this study pave the way to design RHEAs with outstanding high‐temperature strength.

     
    more » « less
  3. Abstract This article is dedicated to the occurrence, relevance, and structure of minerals whose formation involves high pressure. This includes minerals that occur in the interior of the Earth as well as minerals that are found in shock-metamorphized meteorites and terrestrial impactites. I discuss the chemical and physical reasons that render the definition of high-pressure minerals meaningful, in distinction from minerals that occur under surface-near conditions on Earth or at high temperatures in space or on Earth. Pressure-induced structural transformations in rock-forming minerals define the basic divisions of Earth's mantle in the upper mantle, transition zone, and lower mantle. Moreover, the solubility of minor chemical components in these minerals and the occurrence of accessory phases are influential in mixing and segregating chemical elements in Earth as an evolving planet. Brief descriptions of the currently known high-pressure minerals are presented. Over the past 10 years more high-pressure minerals have been discovered than during the previous 50 years, based on the list of minerals accepted by the IMA. The previously unexpected richness in distinct high-pressure mineral species allows for assessment of differentiation processes in the deep Earth. 
    more » « less
  4. Abstract

    Clutches are integral components in robotic systems, enabling programming of system stiffness and precise control over a wide range of motion types. While different types of clutches exist, electroadhesive (EA) clutches present several key advantages, such as flexibility, low mass, low power consumption, simplicity, and fast response. Achieving high EA stress in EA clutches has remained a challenge, however, necessitating high voltage input or a large contact area to achieve the desired force. In this work, an EA clutch is proposed with a high EA stress achieved by taking fracture mechanics into account and using a high dielectric composite layer while still maintaining a comparable high switching speed to other dielectric‐based EA clutches. The maximum EA stress is observed to be 108.8 N cm−2, which is four times larger than what has been reported previously among dielectric‐based EA clutches at room temperature. This high EA stress clutch can facilitate miniaturization and lower the operating voltage as well as extend to high load capacity applications. The proposed approach holds promise for advancements in various domains, including haptics (both kinesthetic and cutaneous), exoskeletons, walking robots, and other systems that require compliance, low mass, and precise force control.

     
    more » « less
  5. The development of color centers in diamond as the basis for emerging quantum technologies has been limited by the need for ion implantation to create the appropriate defects. We present a versatile method to dope diamond without ion implantation by synthesis of a doped amorphous carbon precursor and transformation at high temperatures and high pressures. To explore this bottom-up method for color center generation, we rationally create silicon vacancy defects in nanodiamond and investigate them for optical pressure metrology. In addition, we show that this process can generate noble gas defects within diamond from the typically inactive argon pressure medium, which may explain the hysteresis effects observed in other high-pressure experiments and the presence of noble gases in some meteoritic nanodiamonds. Our results illustrate a general method to produce color centers in diamond and may enable the controlled generation of designer defects. 
    more » « less