Accurately predicting species' range shifts in response to environmental change is paramount for understanding ecological processes and global change. In synthetic analyses, traits emerge as significant but weak predictors of species' range shifts across recent climate change. These studies assume linear responses to traits, while detailed empirical work often reveals trait responses that are unimodal and contain thresholds or other nonlinearities. We hypothesize that the use of linear modeling approaches fails to capture these nonlinearities and, therefore, may be under‐powering traits to predict range shifts. We evaluate the predictive performance of approaches that can capture nonlinear relationships (ridge‐regularized linear regression, support vector regression with linear and nonlinear kernels, and random forests). We apply our models using six multidecadal range shift datasets for plants, moths, marine fish, birds, and small mammals. We show that nonlinear approaches can perform better than least‐squares linear modeling in reproducing historical range shifts. Consistent with expectations, we identify dispersal and climatic niche traits as primary determinants of distribution shifts. Traits identified as important predictors and the direction of trait effects are generally consistent across models, but there are notable exceptions. Among important predictors, there are more consistent responses to climatic niches than dispersal ability. Modest improvements in predictability when accounting for nonlinearities and interactions, and the overall low amount of variance accounted for by trait predictors suggest limits to trait‐based statistical predictive frameworks.
- Award ID(s):
- 1911334
- PAR ID:
- 10386665
- Date Published:
- Journal Name:
- Annual Review of Ecology, Evolution, and Systematics
- Volume:
- 52
- Issue:
- 1
- ISSN:
- 1543-592X
- Page Range / eLocation ID:
- 47 to 66
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
null (Ed.)ABSTRACT Cities are emerging as a new venue to overcome the challenges of obtaining data on compensatory responses to climatic warming through phenotypic plasticity and evolutionary change. In this Review, we highlight how cities can be used to explore physiological trait responses to experimental warming, and also how cities can be used as human-made space-for-time substitutions. We assessed the current literature and found evidence for significant plasticity and evolution in thermal tolerance trait responses to urban heat islands. For those studies that reported both plastic and evolved components of thermal tolerance, we found evidence that both mechanisms contributed to phenotypic shifts in thermal tolerance, rather than plastic responses precluding or limiting evolved responses. Interestingly though, for a broader range of studies, we found that the magnitude of evolved shifts in thermal tolerance was not significantly different from the magnitude of shift in those studies that only reported phenotypic results, which could be a product of evolution, plasticity, or both. Regardless, the magnitude of shifts in urban thermal tolerance phenotypes was comparable to more traditional space-for-time substitutions across latitudinal and altitudinal clines in environmental temperature. We conclude by considering how urban-derived estimates of plasticity and evolution of thermal tolerance traits can be used to improve forecasting methods, including macrophysiological models and species distribution modelling approaches. Finally, we consider areas for further exploration including sub-lethal performance traits and thermal performance curves, assessing the adaptive nature of trait shifts, and taking full advantage of the environmental thermal variation that cities generate.more » « less
-
Abstract Functional traits fall along a continuum from resource conservative to acquisitive and are powerful predictors of the ecological settings necessary for a species to persist and establish. As a consequence, a major problem that functional trait analysis could address is understanding the ecological contexts necessary for the persistence of polyploid plants, because early generation polyploids, or “neopolyploids,” are at a high extinction risk. Because neopolyploidy could increase nutrient limitation, growth strategies should shift to accommodate the increased need for resources, but this prediction is untested. To address this gap, we compared the functional trait responses of diploids, synthetic neotetraploids, and naturally occurring tetraploids of
Heuchera cylindrica , an herbaceous perennial plant, to nutrient manipulations in a greenhouse experiment. We found strong support for the hypothesis that neotetraploidy increases nutrient requirements, as evidenced by reduced productivity and increased tissue concentrations of nitrogen and phosphorus in neotetraploids. We also found that the repeated formation of independent origins of neotetraploidy led to differing responses to nutrient supply, but neotetraploidy generally shifted functional traits to be more resource acquisitive and inefficient. Taken together, our results suggest that shifts in functional trait responses may constrain the ability of neopolyploids to establish in nutrient‐poor habitats. -
Abstract Globally, species are undergoing range shifts in response to climate change. However, the potential impacts of climate-driven range shifts are not well understood. In southern California, the predatory whelk
Mexacanthina lugubris has undergone a northward range shift of more than 100 km in the past four decades. We traced the history of the whelk’s range shift and assessed potential effects using an integrated approach, consisting of field surveys, as well as feeding and thermotolerance experiments. We found that at sites whereMexacanthina and native species co-occurred, native whelks distributions peaked lower in the intertidal. In laboratory experiments, we found that the presence ofMexacanthina led to reduced growth in native whelks (Acanthinucella spirata ). Additionally, the range-shifting whelk was able to tolerate higher temperatures than common native species (A. spirata andNucella emarginata ), suggesting further impacts as a result of climate warming. Many species are likely to undergo range shifts as a coping mechanism for changing climatic conditions. However, communities are unlikely to shift as a whole due to species-specific responses. By studying the impacts of range-shifting species, likeMexacanthina , we can better understand how climate change will alter existing community structure and composition. -
Abstract Climate change is redistributing biodiversity globally and distributional shifts have been found to follow local climate velocities. It is largely assumed that marine endotherms such as cetaceans might shift more slowly than ectotherms in response to warming and would primarily follow changes in prey, but distributional shifts in cetaceans are difficult to quantify. Here we use data from fisheries bycatch and strandings to examine changes in the distribution of long-finned pilot whales (
Globicephala melas ), and assess shifts in pilot whales and their prey relative to climate velocity in a rapidly warming region of the Northwest Atlantic. We found a poleward shift in pilot whale distribution that exceeded climate velocity and occurred at more than three times the rate of fish and invertebrate prey species. Fish and invertebrates shifted at rates equal to or slower than expected based on climate velocity, with more slowly shifting species moving to deeper waters. We suggest that traits such as mobility, diet specialization, and thermoregulatory strategy are central to understanding and anticipating range shifts. Our findings highlight the potential for trait-mediated climate shifts to decouple relationships between endothermic cetaceans and their ectothermic prey, which has important implications for marine food web dynamics and ecosystem stability.