While there is high certainty that chronic coastal hazards like floodingand erosion, are increasing due to climate change induced sea-levelrise, there is high uncertainty surrounding the timing, intensity, andlocation of future hazard impacts. Assessments that quantify theseaspects of future hazards are critical for adaptation planning under achanging climate and can reveal new insights into the drivers of coastalhazards. In particular, probabilistic simulations of future hazardimpacts can improve these assessments by explicitly quantifyinguncertainty and by better simulating dependence structures between thecomplex multivariate drivers of hazards. In this study, a regional-scaleprobabilistic assessment of climate change induced coastal hazards isconducted for the Cascadia region, USA during the 21st century. Threeco-produced hazard proxies for beach safety, erosion, and flooding arequantified to identify areas of high hazard impacts and determine hazarduncertainty under three sea-level rise scenarios. A novel chroniccoastal hazard hotspot indicator is introduced that identifies areasthat may experience significant increases in hazard impacts compared topresent day conditions. We find that Southern Cascadia and NorthernWashington have larger hazard impacts and hazard uncertainty due totheir morphologic setting. Erosional hazards, relative to beach safetyand coastal flooding, will increase the most in Cascadia during the 21stcentury under all sea-level rise scenarios. Finally, we find that hazarduncertainty associated with wave and water level variability exceeds theuncertainty associated with sea-level-rise until the end of the century.
more »
« less
Sea Level and Socioeconomic Uncertainty Drives High‐End Coastal Adaptation Costs
Abstract Sea‐level rise and associated flood hazards pose severe risks to the millions of people globally living in coastal zones. Models representing coastal adaptation and impacts are important tools to inform the design of strategies to manage these risks. Representing the often deep uncertainties influencing these risks poses nontrivial challenges. A common uncertainty characterization approach is to use a few benchmark cases to represent the range and relative probabilities of the set of possible outcomes. This has been done in coastal adaptation studies, for example, by using low, moderate, and high percentiles of an input of interest, like sea‐level changes. A key consideration is how this simplified characterization of uncertainty influences the distributions of estimated coastal impacts. Here, we show that using only a few benchmark percentiles to represent uncertainty in future sea‐level change can lead to overconfident projections and underestimate high‐end risks as compared to using full ensembles for sea‐level change and socioeconomic parametric uncertainties. When uncertainty in future sea level is characterized by low, moderate, and high percentiles of global mean sea‐level rise, estimates of high‐end (95th percentile) damages are underestimated by between 18% (SSP1‐2.6) and 46% (SSP5‐8.5). Additionally, using the 5th and 95th percentiles of sea‐level scenarios underestimates the 5%–95% width of the distribution of adaptation costs by a factor ranging from about two to four, depending on SSP‐RCP pathway. The resulting underestimation of the uncertainty range in adaptation costs can bias adaptation and mitigation decision‐making.
more »
« less
- Award ID(s):
- 2213432
- PAR ID:
- 10386712
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Earth's Future
- Volume:
- 10
- Issue:
- 12
- ISSN:
- 2328-4277
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In 2012, Hurricane Sandy hit the East Coast of the United States, creating widespread coastal flooding and over $60 billion in reported economic damage. The potential influence of climate change on the storm itself has been debated, but sea level rise driven by anthropogenic climate change more clearly contributed to damages. To quantify this effect, here we simulate water levels and damage both as they occurred and as they would have occurred across a range of lower sea levels corresponding to different estimates of attributable sea level rise. We find that approximately $8.1B ($4.7B–$14.0B, 5th–95th percentiles) of Sandy’s damages are attributable to climate-mediated anthropogenic sea level rise, as is extension of the flood area to affect 71 (40–131) thousand additional people. The same general approach demonstrated here may be applied to impact assessments for other past and future coastal storms.more » « less
-
Sea level rise (SLR) may impose substantial economic costs to coastal communities worldwide, but characterizing its global impact remains challenging because SLR costs depend heavily on natural characteristics and human investments at each location – including topography, the spatial distribution of assets, and local adaptation decisions. To date, several impact models have been developed to estimate the global costs of SLR. Yet, the limited availability of open-source and modular platforms that easily ingest up-to-date socioeconomic and physical data sources restricts the ability of existing systems to incorporate new insights transparently. In this paper, we present a modular, open-source platform designed to address this need, providing end-to-end transparency from global input data to a scalable least-cost optimization framework that estimates adaptation and net SLR costs for nearly 10 000 global coastline segments and administrative regions. Our approach accounts both for uncertainty in the magnitude of global mean sea level (g.m.s.l.) rise and spatial variability in local relative sea level rise. Using this platform, we evaluate costs across 230 possible socioeconomic and SLR trajectories in the 21st century. According to the latest Intergovernmental Panel on Climate Change Assessment Report (AR6), g.m.s.l. is likely to rise during the 21st century by 0.40–0.69 m if late-century warming reaches 2 ∘C and by 0.58–0.91 m with 4 ∘C of warming (Fox-Kemper et al., 2021). With no forward-looking adaptation, we estimate that annual costs of sea level rise associated with a 2 ∘C scenario will likely fall between USD 1.2 and 4.0 trillion (0.1 % and 1.2 % of GDP, respectively) by 2100, depending on socioeconomic and sea level rise trajectories. Cost-effective, proactive adaptation would provide substantial benefits, lowering these values to between USD 110 and USD 530 billion (0.02 and 0.06 %) under an optimal adaptation scenario. For the likely SLR trajectories associated with 4 ∘C warming, these costs range from USD 3.1 to 6.9 trillion (0.3 % and 2.0 %) with no forward-looking adaptation and USD 200 billion to USD 750 billion (0.04 % to 0.09 %) under optimal adaptation. The Intergovernmental Panel on Climate Change (IPCC) notes that deeply uncertain physical processes like marine ice cliff instability could drive substantially higher global sea level rise, potentially approaching 2.0 m by 2100 in very high emission scenarios. Accordingly, we also model the impacts of 1.5 and 2.0 m g.m.s.l. rises by 2100; the associated annual cost estimates range from USD 11.2 to 30.6 trillion (1.2 % and 7.6 %) under no forward-looking adaptation and USD 420 billion to 1.5 trillion (0.08 % to 0.20 %) under optimal adaptation. Our modeling platform used to generate these estimates is publicly available in an effort to spur research collaboration and support decision-making, with segment-level physical and socioeconomic input characteristics provided at https://doi.org/10.5281/zenodo.7693868 (Bolliger et al., 2023a) and model results at https://doi.org/10.5281/zenodo.7693869 (Bolliger et al., 2023b).more » « less
-
null (Ed.)Abstract Extreme sea levels (ESLs) due to typhoon-induced storm surge threaten the societal security of densely populated coastal China. Uncertainty in extreme value analysis (EVA) for ESL estimation has large implications for coastal communities’ adaptation to natural hazards. Here we evaluate uncertainties in ESL estimation and relevant driving factors based on hourly observations from 13 tide gauge stations and a complementary dataset derived from a hydrodynamic model. Results indicate significant uncertainties in ESL estimations stemming from using different EVA methods, which then propagate to the inundation assessment. Amplification factors due to sea-level rise (SLR) are highly sensitive to local relative SLR and the shape of the exceedance probability curve, which in turn depends on the selected EVA method. The hydrodynamic model hindcast indicates that high ESLs mainly occurred in eastern coastal China due to typhoon-induced storm surge. Larger uncertainties in the modelled ESLs are found for the coasts of the Yangtze River Delta, and particularly in the river mouth region. Future research and adaptation planning should prioritize these regions given expected future rising sea level, compound flood events, and human-induced factors (e.g. subsidence). This study provides theoretical and practical references for adaptation to ESL-related hazards along coastal China, with implications for coastal regions worldwide.more » « less
-
Sea‐level rise sits at the frontier of usable climate climate change research, because it involves natural and human systems with long lags, irreversible losses, and deep uncertainty. For example, many of the measures to adapt to sea‐level rise involve infrastructure and land‐use decisions, which can have multigenerational lifetimes and will further influence responses in both natural and human systems. Thus, sea‐level science has increasingly grappled with the implications of (1) deep uncertainty in future climate system projections, particularly of human emissions and ice sheet dynamics; (2) the overlay of slow trends and high‐frequency variability (e.g., tides and storms) that give rise to many of the most relevant impacts; (3) the effects of changing sea level on the physical exposure and vulnerability of ecological and socioeconomic systems; and (4) the challenges of engaging stakeholder communities with the scientific process in a way that genuinely increases the utility of the science for adaptation decision making. Much fundamental climate system research remains to be done, but many of the most critical issues sit at the intersection of natural sciences, social sciences, engineering, decision science, and political economy. Addressing these issues demands a better understanding of the coupled interactions of mean and extreme sea levels, coastal geomorphology, economics, and migration; decision‐first approaches that identify and focus research upon those scientific uncertainties most relevant to concrete adaptation choices; and a political economy that allows usable science to become used science.more » « less
An official website of the United States government
