skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Halibee fossil assemblages reveal later Pleistocene cercopithecins (Cercopithecidae: Primates) in the Middle Awash of Ethiopia
Abstract ObjectivesThe goals of this study were to describe and interpret two new fossil assemblages of cercopithecin monkeys (n = 328), one from the Faro Daba beds (ca. 100,000 years) and the other one from the Chai Baro beds (>158,000 years old), in the Afar Rift of Ethiopia. Materials and MethodsWe describe the two assemblages and compare them to extant cercopithecin species and the smaller fossil assemblage from Asbole, Ethiopia (ca. 600 ka). We use a population‐based approach to the taxonomy given the unusually large number of specimens. Craniodental and postcranial anatomy are presented. Evidence of locomotor habitus is described and evaluated in a framework of hybridization and postcranial plasticity. ResultsWe attribute all cercopithecin specimens from both beds to cf.Chlorocebusand conclude that the Faro Daba and Chai Baro assemblages likely sample single species at each time horizon. Subtle differences between the two assemblages, mostly in postcranial morphology, are insufficient to justify separation at the species level. DiscussionThe large sample sizes and unique preservational aspects of these two assemblages open a new window into the recent evolution of guenons. Our data indicate that these fossil populations may be ancestral to the cercopithecins currently living in the Afar region of Ethiopia.  more » « less
Award ID(s):
0616308
PAR ID:
10386759
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
American Journal of Biological Anthropology
Volume:
180
Issue:
1
ISSN:
2692-7691
Page Range / eLocation ID:
p. 6-47
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract PremiseAcmopyle(Podocarpaceae) comprises two extant species from Oceania that are physiologically restricted to ever‐wet rainforests, a confirmed fossil record based on leaf adpressions and cuticles in Australia since the Paleocene, and a few uncertain reports from New Zealand, Antarctica, and South America. We investigated fossil specimens withAcmopyleaffinities from the early Eocene Laguna del Hunco site in Patagonia, Argentina. MethodsWe studied 42 adpression leafy‐shoot fossils and included them in a total evidence phylogenetic analysis. ResultsAcmopyle grayaesp. nov. is based on heterophyllous leafy shoots with three distinct leaf types. Among these, bilaterally flattened leaves uniquely preserve subparallel, linear features that we interpret as accessory transfusion tissue (ATT, an extra‐venous water‐conducting tissue). Some apical morphologies ofA. grayaeshoots are compatible with the early stages of ovuliferous cone development. Our phylogenetic analysis recovers the new species in a polytomy with the two extantAcmopylespecies. We report several types of insect‐herbivory damage. We also transferAcmopyle engelhardtifrom the middle Eocene Río Pichileufú flora toDacrycarpus engelhardticomb. nov. ConclusionsWe confirm the biogeographically significant presence of the endangered West Pacific genusAcmopylein Eocene Patagonia.Acmopyleis one of the most drought‐intolerant genera in Podocarpaceae, possibly due to the high collapse risk of the ATT, and thus the new fossil species provides physiological evidence for the presence of an ever‐wet rainforest environment at Laguna del Hunco during the Early Eocene Climatic Optimum. 
    more » « less
  2. Summary Fossilized plant–insect herbivore associations provide fundamental information about the assembly of terrestrial communities through geologic time. However, fossil evidence of associations originating in deep time and persisting to the modern day is scarce.We studied the insect herbivore damage found on 284Eucalyptus frenguellianaleaves from the early Eocene Laguna del Hunco rainforest locality in Argentinean Patagonia and compared damage patterns with those observed on extant, rainforest‐associatedEucalyptusspecies from Australasia (> 10 000 herbarium sheets reviewed).In the fossil material, we identified 28 insect herbivory damage types, including 12 types of external feeding, one of piercing‐and‐sucking, five of galls, and 10 of mines. All 28 damage types were observed in the herbarium specimens.The finding of all the fossil damage types on extantEucalyptusspecimens suggests long‐standing associations between multiple insect herbivore lineages and their host genus spanning 52 million years across the Southern Hemisphere. This long‐term persistence, probably enabled through niche conservatism in wet eucalypt forests, demonstrates the imprint of fossil history on the composition of extant insect herbivore assemblages. Although the identities of most insect culprits remain unknown, we provide a list ofEucalyptusspecies and specific population locations to facilitate their discovery, highlighting the relevance of fossils in discovering extant biodiversity. 
    more » « less
  3. IntroductionThe phylogenetic and ecological importance of paranasal sinuses in carnivorans was highlighted by several previous authors, mostly in extant species. Nevertheless, no specific study on this feature on extant canids, and no one on fossil representatives of the family, has been published up to now. Here, we analyze for the first time the paranasal sinus of extant and fossil canids through computed tomographic techniques to characterize them morphologically and morphometrically, making ecological inferences. MethodsTo do so, we applied for the first time an innovative deformation-based morphometric approach. ResultsThe results obtained for extant species highlight a remarkable correlation between morphology and ecomorphotypes previously defined by some scholars (namely hypercarnivorous group-hunters; small-prey hypercarnivores, mesocarnivores, hypocarnivores). Our results thus support the direct relationship between diet preferences and the development of frontal sinus in canids. Regarding fossil specimens, we reconstructed for the first time the frontal sinus of threeEucyonspecies and compared it to those of living forms. DiscussionThe best-preserved specimen, the only known cranium ofEucyon adoxusdated to the Late Pliocene of Saint-Estève (France), displayed similarities with hypercarnivorous group-hunter canids by the large sinus prominences. Given that the overall craniodental morphology ofE. adoxussuggests that it acted as a small prey hypercarnivore—similar to extantCanis simensis—the aforementioned affinities might have evolved independently, in relation to high stresses during feeding. Overall, our study demonstrates that morphological inspection and deformation-based geometric morphometrics complement each other and allow a thorough investigation of sinus shape variability, thus enabling the study of sinus morphology in other fossil carnivorans with the ultimate goal of inferring their ecological preferences. 
    more » « less
  4. Abstract PremiseAsia's wet tropical forests face a severe biodiversity crisis, but few fossils record their evolutionary history. We recently discovered in situ cuticles on fossil leaves, attributed to the giant rainforest treeDryobalanopsof the iconic Dipterocarpaceae family, from the Plio‐Pleistocene of Brunei Darussalam (northern Borneo). Studying these specimens allowed us to validate the generic identification and delineate affinities to living dipterocarp species. MethodsWe compared the leaf cuticles and architecture of these fossil leaves with the seven livingDryobalanopsspecies. ResultsThe cuticular features shared between the fossils and extantDryobalanops, including the presence of giant stomata on veins, confirm their generic placement. The leaf characters are identical to those ofD. rappa, an IUCN red‐listed Endangered, northern Borneo endemic. TheD. rappamonodominance at the fossil site, along withDipterocarpusspp. leaf fossils, indicates a dipterocarp‐dominated forest near the mangrove‐swamp depocenter, most likely in an adjacent peatland. ConclusionsTheDryobalanops rappafossils are the first fossil evidence of a living endangered tropical tree species and show how analysis of in situ cuticles can help illuminate the poorly known floristic history of the Asian tropics. This discovery highlights new potential for fossils to inform heritage values and paleoconservation in Southeast Asia. 
    more » « less
  5. PremiseSolanaceae is a scientifically and economically important angiosperm family with a minimal fossil record and an intriguing early evolutionary history. Here, we report a newly discovered fossil lantern fruit with a suite of features characteristic of Physalideae within Solanaceae. The fossil comes from the early Eocene Laguna del Hunco site (ca. 52 Ma) in Chubut, Argentina, which previously yielded the only other physaloid fruit fossil,Physalis infinemundi. MethodsThe fruit morphology and calyx venation pattern of the new fossil were compared withP. infinemundiand extant species of Solanaceae. ResultsPhysalis hunickeniisp. nov. is clearly distinct fromP. infinemundiin its fruiting calyx with wider primary veins, longer and thinner lobes, and especially in its venation pattern with high density, transverse tertiary veins; these features support its placement in a new species. In comparison with extant physaloid genera, the calyx venation pattern and other diagnostic traits reinforce placement of the new fossil, likeP. infinemundi, within the tribe Physalideae of Solanaceae. ConclusionsBoth species of fossil nightshades from Laguna del Hunco represent crown‐group Solanaceae but are older than all prior age estimates of the family. Although at least 20 transoceanic dispersals have been proposed as the driver of range expansion of Solanaceae, the Patagonian fossils push back the diversification of the family to Gondwanan times. Thus, overland dispersal across Gondwana is now a likely scenario for at least some biogeographic patterns, in light of the ancient trans‐Antarctic land connections between South America and Australia. 
    more » « less