skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Revisiting AGAMOUS-LIKE15, a Key Somatic Embryogenesis Regulator, Using Next Generation Sequencing Analysis in Arabidopsis
AGAMOUS-like 15 (AGL15) is a member of the MADS-domain transcription factor (TF) family. MADS proteins are named for a conserved domain that was originally from an acronym derived from genes expressed in a variety of eukaryotes (MCM1-AGAMOUS-DEFICIENS-SERUM RESPONSE FACTOR). In plants, this family has expanded greatly, with more than one-hundred members generally found in dicots, and the proteins encoded by these genes have often been associated with developmental identity. AGL15 transcript and protein accumulate primarily in embryos and has been found to promote an important process called plant regeneration via somatic embryogenesis (SE). To understand how this TF performs this function, we have previously used microarray technologies to assess direct and indirect responsive targets of this TF. We have now revisited this question using next generation sequencing (NGS) to both characterize in vivo binding sites for AGL15 as well as response to the accumulation of AGL15. We compared these data to the prior microarray results to evaluate the different platforms. The new NGS data brought to light an interaction with brassinosteroid (BR) hormone signaling that was “missed” in prior Gene Ontology analysis from the microarray studies.  more » « less
Award ID(s):
1656380
PAR ID:
10386885
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
International Journal of Molecular Sciences
Volume:
23
Issue:
23
ISSN:
1422-0067
Page Range / eLocation ID:
15082
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. AGAMOUS-like 15 (AGL15) is a member of the MADS domain family of transcription factors (TFs) that can directly induce and repress target gene expression, and for which promotion of somatic embryogenesis (SE) is positively correlated with accumulation. An ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif of form LxLxL within the carboxyl-terminal domain of AGL15 was shown to be involved in repression of gene expression. Here, we examine whether AGL15′s ability to repress gene expression is needed to promote SE. While a form of AGL15 where the LxLxL is changed to AxAxA can still promote SE, another form with a strong transcriptional activator at the carboxy-terminal end, does not promote SE and, in fact, is detrimental to SE development. Select target genes were examined for response to the different forms of AGL15. 
    more » « less
  2. Abstract AGAMOUS-Like 18 (AGL18) is a MADS domain transcription factor (TF) that is structurally related to AGL15. Here we show that, like AGL15, AGL18 can promote somatic embryogenesis (SE) when ectopically expressed in Arabidopsis (Arabidopsis thaliana). Based on loss-of-function mutants, AGL15 and AGL18 have redundant functions in developmental processes such as SE. To understand the nature of this redundancy, we undertook a number of studies to look at the interaction between these factors. We studied the genome-wide direct targets of AGL18 to characterize its roles at the molecular level using chromatin immunoprecipitation (ChIP)-SEQ combined with RNA-SEQ. The results demonstrated that AGL18 binds to thousands of sites in the genome. Comparison of ChIP-SEQ data for AGL15 and AGL18 revealed substantial numbers of genes bound by both AGL15 and AGL18, but there were also differences. Gene ontology analysis revealed that target genes were enriched for seed, embryo, and reproductive development as well as hormone and stress responses. The results also demonstrated that AGL15 and AGL18 interact in a complex regulatory loop, where AGL15 inhibited transcript accumulation of AGL18, while AGL18 increased AGL15 transcript accumulation. Co-immunoprecipitation revealed an interaction between AGL18 and AGL15 in somatic embryo tissue. The binding and expression analyses revealed a complex crosstalk and interactions among embryo TFs and their target genes. In addition, our study also revealed that phosphorylation of AGL18 and AGL15 was crucial for the promotion of SE. 
    more » « less
  3. Spatiotemporal regulation of gene expression by polycomb repressive complex 2 (PRC2) is critical for animal and plant development. The Arabidopsis fertilization independent seed (FIS)-PRC2 complex functions specifically during plant reproduction from gametogenesis to seed development. After a double fertilization event, triploid endosperm proliferates early, followed by the growth of a diploid embryo, which replaces the endosperm in Arabidopsis and many dicots. Key genes critical for endosperm proliferation such as IKU2 and MINI3 are activated after fertilization. Here we report that two MADS-box AGAMOUS-LIKE (AGL) proteins associate with the key endosperm proliferation loci and recruit the FIS-PRC2 repressive complex at 4–5 days after pollination (DAP). Interestingly, AGL9 and AGL15 only accumulate toward the end of endosperm proliferation at 4–5 DAP and promote the deposition of H3K27me3 marks at key endosperm proliferation loci. Disruption of AGL9 and AGL15 or overexpression of AGL9 or AGL15 significantly influence endosperm proliferation and cellularization. Genome-wide analysis with cleavage Under Targets and tagmentation (CUT&Tag) sequencing and RNA sequencing revealed the landscape of endosperm H3K27me3 marks and gene expression profiles in Col-0 and agl9 agl15. CUT&Tag qPCR also demonstrated the occupancy of the two MADS-box proteins and FIS-PRC2 on a few representative target loci. Our studies suggest that MADS-box proteins could potentially recruit PRC2 to regulate many other developmental processes in plants or even in fungi and animals. 
    more » « less
  4. Plants have amazing regenerative properties with single somatic cells, or groups of cells able to give rise to fully formed plants. One means of regeneration is somatic embryogenesis, by which an embryonic structure is formed that “converts” into a plantlet. Somatic embryogenesis has been used as a model for zygotic processes that are buried within layers of maternal tissues. Understanding mechanisms of somatic embryo induction and development are important as a more accessible model for seed development. We rely on seed development not only for most of our caloric intake, but also as a delivery system for engineered crops to meet agricultural challenges. Regeneration of transformed cells is needed for this applied work as well as basic research to understand gene function. Here we focus on a MADS-domain transcription factor, AGAMOUS-Like15 (AGL15) that shows a positive correlation between accumulation levels and capacity for somatic embryogenesis. We relate AGL15 function to other transcription factors, hormones, and epigenetic modifiers involved in somatic embryo development. 
    more » « less
  5. Abstract The regulation of floral organ identity was investigated using a forward genetic approach in five floral homeotic mutants ofThalictrum, a noncore eudicot. We hypothesized that these mutants carry defects in the floral patterning genes. Mutant characterization comprised comparative floral morphology and organ identity gene expression at early and late developmental stages, followed by sequence analysis of coding and intronic regions to identify transcription factor binding sites and protein–protein interaction (PPI) motifs. Mutants exhibited altered expression of floral MADS‐box genes, which further informed the function of paralogs arising from gene duplications not found in reference model systems. The ensuing modified BCE models for the mutants supported instances of neofunctionalization (e.g., B‐class genes expressed ectopically in sepals), partial redundancy (E‐class), or subfunctionalization (C‐class) of paralogs. A lack of deleterious mutations in the coding regions of candidate floral MADS‐box genes suggested thatcis‐regulatory ortrans‐acting mutations are at play. Consistent with this hypothesis, double‐flower mutants had transposon insertions or showed signs of transposon activity in the regulatory intron ofAGAMOUS(AG) orthologs. Single amino acid substitutions were also found, yet they did not fall on any of the identified DNA binding or PPI motifs. In conclusion, we present evidence suggesting that transposon activity and regulatory mutations in floral homeotic genes likely underlie the striking phenotypes of theseThalictrumfloral homeotic mutants. 
    more » « less