skip to main content


Title: Representing Hyperbolic Space Accurately using Multi-Component Floats
Hyperbolic space is particularly useful for embedding data with hierarchical structure; however, representing hyperbolic space with ordinary floating-point numbers greatly affects the performance due to its \emph{ineluctable} numerical errors. Simply increasing the precision of floats fails to solve the problem and incurs a high computation cost for simulating greater-than-double-precision floats on hardware such as GPUs, which does not support them. In this paper, we propose a simple, feasible-on-GPUs, and easy-to-understand solution for numerically accurate learning on hyperbolic space. We do this with a new approach to represent hyperbolic space using multi-component floating-point (MCF) in the Poincar{\'e} upper-half space model. Theoretically and experimentally we show our model has small numerical error, and on embedding tasks across various datasets, models represented by multi-component floating-points gain more capacity and run significantly faster on GPUs than prior work.  more » « less
Award ID(s):
2008102
NSF-PAR ID:
10387215
Author(s) / Creator(s):
;
Editor(s):
Ranzato, M.; Beygelzimer, A.; Dauphin Y.; Liang, P.S.; Wortman Vaughan, J.
Date Published:
Journal Name:
Advances in neural information processing systems
Volume:
34
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Obeid, I. ; Selesnik, I. ; Picone, J. (Ed.)
    The Neuronix high-performance computing cluster allows us to conduct extensive machine learning experiments on big data [1]. This heterogeneous cluster uses innovative scheduling technology, Slurm [2], that manages a network of CPUs and graphics processing units (GPUs). The GPU farm consists of a variety of processors ranging from low-end consumer grade devices such as the Nvidia GTX 970 to higher-end devices such as the GeForce RTX 2080. These GPUs are essential to our research since they allow extremely compute-intensive deep learning tasks to be executed on massive data resources such as the TUH EEG Corpus [2]. We use TensorFlow [3] as the core machine learning library for our deep learning systems, and routinely employ multiple GPUs to accelerate the training process. Reproducible results are essential to machine learning research. Reproducibility in this context means the ability to replicate an existing experiment – performance metrics such as error rates should be identical and floating-point calculations should match closely. Three examples of ways we typically expect an experiment to be replicable are: (1) The same job run on the same processor should produce the same results each time it is run. (2) A job run on a CPU and GPU should produce identical results. (3) A job should produce comparable results if the data is presented in a different order. System optimization requires an ability to directly compare error rates for algorithms evaluated under comparable operating conditions. However, it is a difficult task to exactly reproduce the results for large, complex deep learning systems that often require more than a trillion calculations per experiment [5]. This is a fairly well-known issue and one we will explore in this poster. Researchers must be able to replicate results on a specific data set to establish the integrity of an implementation. They can then use that implementation as a baseline for comparison purposes. A lack of reproducibility makes it very difficult to debug algorithms and validate changes to the system. Equally important, since many results in deep learning research are dependent on the order in which the system is exposed to the data, the specific processors used, and even the order in which those processors are accessed, it becomes a challenging problem to compare two algorithms since each system must be individually optimized for a specific data set or processor. This is extremely time-consuming for algorithm research in which a single run often taxes a computing environment to its limits. Well-known techniques such as cross-validation [5,6] can be used to mitigate these effects, but this is also computationally expensive. These issues are further compounded by the fact that most deep learning algorithms are susceptible to the way computational noise propagates through the system. GPUs are particularly notorious for this because, in a clustered environment, it becomes more difficult to control which processors are used at various points in time. Another equally frustrating issue is that upgrades to the deep learning package, such as the transition from TensorFlow v1.9 to v1.13, can also result in large fluctuations in error rates when re-running the same experiment. Since TensorFlow is constantly updating functions to support GPU use, maintaining an historical archive of experimental results that can be used to calibrate algorithm research is quite a challenge. This makes it very difficult to optimize the system or select the best configurations. The overall impact of all of these issues described above is significant as error rates can fluctuate by as much as 25% due to these types of computational issues. Cross-validation is one technique used to mitigate this, but that is expensive since you need to do multiple runs over the data, which further taxes a computing infrastructure already running at max capacity. GPUs are preferred when training a large network since these systems train at least two orders of magnitude faster than CPUs [7]. Large-scale experiments are simply not feasible without using GPUs. However, there is a tradeoff to gain this performance. Since all our GPUs use the NVIDIA CUDA® Deep Neural Network library (cuDNN) [8], a GPU-accelerated library of primitives for deep neural networks, it adds an element of randomness into the experiment. When a GPU is used to train a network in TensorFlow, it automatically searches for a cuDNN implementation. NVIDIA’s cuDNN implementation provides algorithms that increase the performance and help the model train quicker, but they are non-deterministic algorithms [9,10]. Since our networks have many complex layers, there is no easy way to avoid this randomness. Instead of comparing each epoch, we compare the average performance of the experiment because it gives us a hint of how our model is performing per experiment, and if the changes we make are efficient. In this poster, we will discuss a variety of issues related to reproducibility and introduce ways we mitigate these effects. For example, TensorFlow uses a random number generator (RNG) which is not seeded by default. TensorFlow determines the initialization point and how certain functions execute using the RNG. The solution for this is seeding all the necessary components before training the model. This forces TensorFlow to use the same initialization point and sets how certain layers work (e.g., dropout layers). However, seeding all the RNGs will not guarantee a controlled experiment. Other variables can affect the outcome of the experiment such as training using GPUs, allowing multi-threading on CPUs, using certain layers, etc. To mitigate our problems with reproducibility, we first make sure that the data is processed in the same order during training. Therefore, we save the data from the last experiment and to make sure the newer experiment follows the same order. If we allow the data to be shuffled, it can affect the performance due to how the model was exposed to the data. We also specify the float data type to be 32-bit since Python defaults to 64-bit. We try to avoid using 64-bit precision because the numbers produced by a GPU can vary significantly depending on the GPU architecture [11-13]. Controlling precision somewhat reduces differences due to computational noise even though technically it increases the amount of computational noise. We are currently developing more advanced techniques for preserving the efficiency of our training process while also maintaining the ability to reproduce models. In our poster presentation we will demonstrate these issues using some novel visualization tools, present several examples of the extent to which these issues influence research results on electroencephalography (EEG) and digital pathology experiments and introduce new ways to manage such computational issues. 
    more » « less
  2. Outlier detection (OD) is a key machine learning task for finding rare and deviant data samples, with many time-critical applications such as fraud detection and intrusion detection. In this work, we propose TOD, the first tensor-based system for efficient and scalable outlier detection on distributed multi-GPU machines. A key idea behind TOD is decomposing complex OD applications into a small collection of basic tensor algebra operators. This decomposition enables TOD to accelerate OD computations by leveraging recent advances in deep learning infrastructure in both hardware and software. Moreover, to deploy memory-intensive OD applications on modern GPUs with limited on-device memory, we introduce two key techniques. First, provable quantization speeds up OD computations and reduces its memory footprint by automatically performing specific floating-point operations in lower precision while provably guaranteeing no accuracy loss. Second, to exploit the aggregated compute resources and memory capacity of multiple GPUs, we introduce automatic batching , which decomposes OD computations into small batches for both sequential execution on a single GPU and parallel execution across multiple GPUs. TOD supports a diverse set of OD algorithms. Evaluation on 11 real-world and 3 synthetic OD datasets shows that TOD is on average 10.9X faster than the leading CPU-based OD system PyOD (with a maximum speedup of 38.9X), and can handle much larger datasets than existing GPU-based OD systems. In addition, TOD allows easy integration of new OD operators, enabling fast prototyping of emerging and yet-to-discovered OD algorithms. 
    more » « less
  3. Floating-point types are notorious for their intricate representation. The effective use of mixed precision, i.e., using various precisions in different computations, is critical to achieve a good balance between accuracy and performance. Unfortunately, reasoning about mixed precision is difficult even for numerical experts. Techniques have been proposed to systematically search over floating-point variables and/or program instructions to find a faster, mixed-precision version of a given program. These techniques, however, are characterized by their black box nature, and face scalability limitations due to the large search space. In this paper, we exploit the community structure of floating-point variables to devise a scalable hierarchical search for precision tuning. Specifically, we perform dependence analysis and edge profiling to create a weighted dependence graph that presents a network of floating-point variables. We then formulate hierarchy construction on the network as a community detection problem, and present a hierarchical search algorithm that iteratively lowers precision with regard to communities. We implement our algorithm in the tool HiFPTuner, and show that it exhibits higher search efficiency over the state of the art for 75.9% of the experiments taking 59.6% less search time on average. Moreover, HiFPTuner finds more profitable configurations for 51.7% of the experiments, with one known to be as good as the global optimum found through exhaustive search. 
    more » « less
  4. Phylogenetic placement, used widely in ecological analyses, seeks to add a new species to an existing tree. A deep learning approach was previously proposed to estimate the distance between query and backbone species by building a map from gene sequences to a high-dimensional space that preserves species tree distances. They then use a distance-based placement method to place the queries on that species tree. In this paper, we examine the appropriate geometry for faithfully representing tree distances while embedding gene sequences. Theory predicts that hyperbolic spaces should provide a drastic reduction in distance distortion compared to the conventional Euclidean space. Nevertheless, hyperbolic embedding imposes its own unique challenges related to arithmetic operations, exponentially-growing functions, and limited bit precision, and we address these challenges. Our results confirm that hyperbolic embeddings have substantially lower distance errors than Euclidean space. However, these better-estimated distances do not always lead to better phylogenetic placement. We then show that the deep learning framework can be used not just to place on a backbone tree but to update it to obtain a fully resolved tree. With our hyperbolic embedding framework, species trees can be updated remarkably accurately with only a handful of genes. 
    more » « less
  5. Knowledge graphs (KGs) capture knowledge in the form of head– relation–tail triples and are a crucial component in many AI systems. There are two important reasoning tasks on KGs: (1) single-hop knowledge graph completion, which involves predicting individual links in the KG; and (2), multi-hop reasoning, where the goal is to predict which KG entities satisfy a given logical query. Embedding-based methods solve both tasks by first computing an embedding for each entity and relation, then using them to form predictions. However, existing scalable KG embedding frameworks only support single-hop knowledge graph completion and cannot be applied to the more challenging multi-hop reasoning task. Here we present Scalable Multi-hOp REasoning (SMORE), the first general framework for both single-hop and multi-hop reasoning in KGs. Using a single machine SMORE can perform multi-hop reasoning in Freebase KG (86M entities, 338M edges), which is 1,500× larger than previously considered KGs. The key to SMORE’s runtime performance is a novel bidirectional rejection sampling that achieves a square root reduction of the complexity of online training data generation. Furthermore, SMORE exploits asynchronous scheduling, overlapping CPU-based data sampling, GPU-based embedding computation, and frequent CPU–GPU IO. SMORE increases throughput (i.e., training speed) over prior multi-hop KG frameworks by 2.2× with minimal GPU memory requirements (2GB for training 400-dim embeddings on 86M-node Freebase) and achieves near linear speed-up with the number of GPUs. Moreover, on the simpler single-hop knowledge graph completion task SMORE achieves comparable or even better runtime performance to state-of-the-art frameworks on both single GPU and multi-GPU settings. 
    more » « less