Ozay, N; Balzano, L; Panagou, D; Abate, A
(Ed.)
We consider the problem of learning a realization of a partially observed bilinear dynamical system (BLDS) from noisy input-output data. Given a single trajectory of input-output samples, we provide an algorithm and a finite time analysis for learning the system’s Markov-like parameters, from which a balanced realization of the bilinear system can be obtained. The stability of BLDS depends on the sequence of inputs used to excite the system. Moreover, our identification algorithm regresses the outputs to highly correlated, nonlinear, and heavy-tailed covariates. These properties, unique to partially observed bilinear dynamical systems, pose significant challenges to the analysis of our algorithm for learning the unknown dynamics. We address these challenges and provide high probability error bounds on our identification algorithm under a uniform stability assumption. Our analysis provides insights into system theoretic quantities that affect learning accuracy and sample complexity. Lastly, we perform numerical experiments with synthetic data to reinforce these insights.
more »
« less
An official website of the United States government

