skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Preparation of metrological states in dipolar-interacting spin systems
Abstract Spin systems are an attractive candidate for quantum-enhanced metrology. Here we develop a variational method to generate metrological states in small dipolar-interacting spin ensembles with limited qubit control. For both regular and disordered spatial spin configurations the generated states enable sensing beyond the standard quantum limit (SQL) and, for small spin numbers, approach the Heisenberg limit (HL). Depending on the circuit depth and the level of readout noise, the resulting states resemble Greenberger-Horne-Zeilinger (GHZ) states or Spin Squeezed States (SSS). Sensing beyond the SQL holds in the presence of finite spin polarization and a non-Markovian noise environment. The developed black-box optimization techniques for small spin numbers (N ≤ 10) are directly applicable to diamond-based nanoscale field sensing, where the sensor size limitsNand conventional squeezing approaches fail.  more » « less
Award ID(s):
1730449 2121044 1818914
PAR ID:
10387244
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Quantum Information
Volume:
8
Issue:
1
ISSN:
2056-6387
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Spin systems are an attractive candidate for quantum-enhanced metrology. Here we develop a variational method to generate metrological states in small dipolar-interacting ensembles with limited qubit controls and unknown spin locations. The generated states enable sensing beyond the standard quantum limit (SQL) and approaching the Heisenberg limit (HL). Depending on the circuit depth and the level of readout noise, the resulting states resemble Greenberger-Horne-Zeilinger (GHZ) states or Spin Squeezed States (SSS). Sensing beyond the SQL holds in the presence of finite spin polarization and a non-Markovian noise environment. 
    more » « less
  2. Recent developments in atomic physics have enabled the experimental generation of many-body entangled states to boost the performance of quantum sensors beyond the Standard Quantum Limit (SQL). This limit is imposed by the inherent projection noise of a quantum measurement. In this Perspective article, we describe the commonly used experimental methods to create many-body entangled states to operate quantum sensors beyond the SQL. In particular, we focus on the potential of applying quantum entanglement to state-of-the-art optical atomic clocks. In addition, we present recently developed time-reversal protocols that make use of complex states with high quantum Fisher information without requiring sub-SQL measurement resolution. We discuss the prospects for reaching near-Heisenberg limited quantum metrology based on such protocols. 
    more » « less
  3. Abstract Feedback oscillators, consisting of an amplifier whose output is partially fed back to its input, provide stable references for standardization and synchronization. Notably, the laser is such an oscillator whose performance can be limited by quantum fluctuations. The resulting frequency instability, quantified by the Schawlow-Townes formula, sets a limit to laser linewidth. Here, we show that the Schawlow-Townes formula applies universally to feedback oscillators beyond lasers. This is because it arises from quantum noise added by the amplifier and out-coupler in the feedback loop. Tracing the precise origin of quantum noise in an oscillator informs techniques to systematically evade it: we show how squeezing and entanglement can enable sub-Schawlow-Townes linewidth feedback oscillators. Our analysis clarifies the quantum limits to the stability of feedback oscillators in general, derives a standard quantum limit (SQL) for all such devices, and quantifies the efficacy of quantum strategies in realizing sub-SQL oscillators. 
    more » « less
  4. The optical lever is a centuries old and widely used detection technique employed in applications ranging from consumer products and industrial sensors to precision force microscopes used in scientific research. However, despite the long history, its quantum limits have yet to be explored. In general, any precision optical measurement is accompanied by optical force induced disturbance to the measured object (termed as back action) leading to a standard quantum limit (SQL). Here, we give a simple ray optics description of how such back action can be evaded in optical lever detection. We perform a proof-of-principle experiment demonstrating the mechanism of back action evasion in the classical regime, by developing a lens system that cancels extra tilting of the reflected light off a silicon nitride membrane mechanical resonator caused by laser-pointing-noise-induced optical torques. We achieve a readout noise floor two orders of magnitude lower than the SQL, corresponding to an effective optomechanical cooperativity of 100 without the need for an optical cavity. As the state-of-the-art ultralow dissipation optomechanical systems relevant for quantum sensing are rapidly approaching the level where quantum noise dominates, simple and widely applicable back action evading protocols will be crucial for pushing beyond quantum limits. 
    more » « less
  5. Abstract We experimentally demonstrate a new type of spin-mixing interferometry in sodium Bose–Einstein condensates (BECs) based on seeded initial states. Seeding is useful because it speeds up the generation of entangled pairs, allowing many collisions to take place quickly, creating large populations in the arms of the interferometer. The entangled probe states of our interferometer are generated via spin-exchange collisions in F  = 1 spinor BECs, where pairs of atoms with the magnetic quantum number m F = 0 collide and change into pairs with m F = ± 1 . Our results show that our seeded spin-mixing interferometer beats the standard quantum limit (SQL) with a metrological gain of 3.69 dB with spin-mixing time t  = 10 ms in the case of single-sided seeding, and 3.33 dB with spin-mixing time t  = 8 ms in the case of double sided seeding. The mechanism for beating the SQL is two-mode spin squeezing generated via spin-exchange collisions. Our results on spin-mixing interferometry with seeded states are useful for future quantum technologies such as quantum-enhanced microwave sensors, and quantum parametric amplifiers based on spin-mixing. 
    more » « less