skip to main content


Title: Evolution and Community Assembly Across Spatial Scales
The finding that adaptive evolution can often be substantial enough to alter ecological dynamics challenges traditional views of community ecology that ignore evolution. Here, we propose that evolution might commonly alter both local and regional processes of community assembly. We show how adaptation can substantially affect community assembly and that these effects depend on regional (metacommunity) factors, including environmental heterogeneity and its spatial structure. In particular, early colonists can often arrive from a nearby community, adapt to local conditions, and subsequently alter the establishment or abundance of late-arriving species, often producing an evolutionary priority effect. We also discuss how interaction type and relative rates of colonization, evolution, and community interactions determine divergent community outcomes. We describe new conceptual approaches that provide insights into these dynamics and statistical methods that can better evaluate their importance. Overall, we demonstrate that accounting for adaptation during community assembly opens up novel ways for making progress on fundamental questions in community ecology.  more » « less
Award ID(s):
1555876
NSF-PAR ID:
10387270
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Annual Review of Ecology, Evolution, and Systematics
Volume:
53
Issue:
1
ISSN:
1543-592X
Page Range / eLocation ID:
299 to 326
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Historically, many biologists assumed that evolution and ecology acted independently because evolution occurred over distances too great to influence most ecological patterns. Today, evidence indicates that evolution can operate over a range of spatial scales, including fine spatial scales. Thus, evolutionary divergence across space might frequently interact with the mechanisms that also determine spatial ecological patterns. Here, we synthesize insights from 500 eco-evolutionary studies and develop a predictive framework that seeks to understand whether and when evolution amplifies, dampens, or creates ecological patterns. We demonstrate that local adaptation can alter everything from spatial variation in population abundances to ecosystem properties. We uncover 14 mechanisms that can mediate the outcome of evolution on spatial ecological patterns. Sometimes, evolution amplifies environmental variation, especially when selection enhances resource uptake or patch selection. The local evolution of foundation or keystone species can create ecological patterns where none existed originally. However, most often, we find that evolution dampens existing environmental gradients, because local adaptation evens out fitness across environments and thus counteracts the variation in associated ecological patterns. Consequently, evolution generally smooths out the underlying heterogeneity in nature, making the world appear less ragged than it would be in the absence of evolution. We end by highlighting the future research needed to inform a fully integrated and predictive biology that accounts for eco-evolutionary interactions in both space and time.

     
    more » « less
  2. null (Ed.)
    Coastal salt marshes are distributed widely across the globe and are considered essential habitat for many fish and crustacean species. Yet, the literature on fishery support by salt marshes has largely been based on a few geographically distinct model systems, and as a result, inadequately captures the hierarchical nature of salt marsh pattern, process, and variation across space and time. A better understanding of geographic variation and drivers of commonalities and differences across salt marsh systems is essential to informing future management practices. Here, we address the key drivers of geographic variation in salt marshes: hydroperiod, seascape configuration, geomorphology, climatic region, sediment supply and riverine input, salinity, vegetation composition, and human activities. Future efforts to manage, conserve, and restore these habitats will require consideration of how environmental drivers within marshes affect the overall structure and subsequent function for fisheries species. We propose a future research agenda that provides both the consistent collection and reporting of sources of variation in small-scale studies and collaborative networks running parallel studies across large scales and geographically distinct locations to provide analogous information for data poor locations. These comparisons are needed to identify and prioritize restoration or conservation efforts, identify sources of variation among regions, and best manage fisheries and food resources across the globe. Introduction Understanding the drivers of geographic variation in the condition and composition of habitats is crucial to our capacity to generalize management plans across space and time and to clarify and perhaps challenge assumptions of functional equivalence among sites. Broadly defined wetland types such as salt marshes are often assumed to provide similar functions throughout their global range, such as providing nursery habitat for fishery species. However, a growing body of evidence suggests substantial geographic variation in the functioning of salt marsh and other coastal ecosystems (Bradley et al. 2020; Whalen et al. 2020). Variation in ecological patterns and processes within habitat types can alter community structure and dynamics. Local-scale patterns and processes (e.g., patch [10s of meters], local [100s of meters]) can be influenced by processes that occur at larger spatial scales (e.g., regional [kms], global), thereby causing geographic differences in the function and ecosystem service delivery of a given habitat type. Salt marshes (which include vegetated platform, interconnected tidal creeks, fringing mudflats, ponds, and pools) are widely distributed (Fig. 1) and function as valuable nursery habitats by providing key resources for many estuarine species that transition to marine or aquatic habitats as adults (Beck et al. 2001; Minello et al. 2003; Sheaves et al. 2015). However, factors that underlie variability in the delivery of ecological functions are still inadequately understood. Previous studies have explored geographic variation in the function of salt marshes for fish and mobile crustaceans (“nekton”; e.g., Minello et al. 2012, Baker et al. 2013). However, field studies that compare multiple sites across a geographical gradient are typically limited in duration and scale. In addition, the explanatory variables (e.g., elevation, flooding duration, plant structure) collected by smaller scale studies are often inconsistent and therefore limit generalizations across sites. 
    more » « less
  3. ABSTRACT Bacteria associated with eukaryotic hosts can affect host fitness and trophic interactions between eukaryotes, but the extent to which bacteria influence the eukaryotic species interactions within trophic levels that modulate biodiversity and species coexistence is mostly unknown. Here, we used phytoplankton, which are a classic model for evaluating interactions between species, grown with and without associated bacteria to test whether the bacteria alter the strength and type of species interactions within a trophic level. We demonstrate that host-associated bacteria alter host growth rates and carrying capacity. This did not change the type but frequently changed the strength of host interspecific interactions by facilitating host growth in the presence of an established species. These findings indicate that microbiomes can regulate their host species’ interspecific interactions. As between-species interaction strength impacts their ability to coexist, our findings show that microbiomes have the potential to modulate eukaryotic species diversity and community composition. IMPORTANCE Description of the Earth’s microbiota has recently undergone a phenomenal expansion that has challenged basic assumptions in many areas of biology, including hominid evolution, human gastrointestinal and neurodevelopmental disorders, and plant adaptation to climate change. By using the classic model system of freshwater phytoplankton that has been drawn upon for numerous foundational theories in ecology, we show that microbiomes, by facilitating their host population, can also influence between-species interactions among their eukaryotic hosts. Between-species interactions, including competition for resources, has been a central tenet in the field of ecology because of its implications for the diversity and composition of communities and how this in turn shapes ecosystem functioning. 
    more » « less
  4. Abstract

    The extent and magnitude of parasitism often vary among closely related host species and across populations within species. Determining the ecological basis for this species and population‐level variation in parasitism is critical for understanding infection dynamics in multi‐host–parasite systems. To investigate such ecological underpinnings of variation in parasitism, we studiedEnallagmadamselfly host species and their water mite (Arrenurusspp.) ectoparasites in lakes.

    We first evaluated how host identity and density could shape parasitism. To test the effects of con‐ and heterospecific host density on parasitism, we used a field experiment withEnallagma basidensandE. signatum. We found that parasitism did not vary with con‐ or heterospecific density and was determined by host identity alone, with no spillover effects.

    We also evaluated the potential role of local adaptation and resource availability in shaping parasitism. To do so, we usedE. signatumin a reciprocal transplant experiment crossed with a prey resource‐level manipulation. This experiment revealed that parasitism declined sharply for one host population in its non‐local lake, but not the other source population, with no effects of prey levels. This asymmetry implies that damselflies express enhanced defences against parasitism that are neither population‐specific nor dependent on resource abundance, or that mites developed heightened local host specificity.

    The results of multivariate modeling from an observational study generally supported these experimental findings: neither host density nor resource abundance strongly explained among‐population variation in parasitism. Instead, local abiotic conditions (pH) had the strongest relationship with parasitism, with minimal associations with predator density, temperature and a measure of immune function.

    Collectively, our findings suggest a crucial role for the local environment in shaping host–parasite interactions within multi‐host–parasite systems. More generally, these results show that research at the intersection of community ecology and disease ecology is critical for understanding host–parasite dynamics within natural communities.

     
    more » « less
  5. Abstract

    Despite the well known scale‐dependency of ecological interactions, relatively little attention has been paid to understanding the dynamic interplay between various spatial scales. This is especially notable in metacommunity theory, where births and deaths dominate dynamics within patches (the local scale), and dispersal and environmental stochasticity dominate dynamics between patches (the regional scale). By considering the interplay of local and regional scales in metacommunities, the fundamental processes of community ecology—selection, drift, and dispersal—can be unified into a single theoretical framework. Here, we analyze three related spatial models that build on the classic two‐species Lotka–Volterra competition model. Two open‐system models focus on a single patch coupled to a larger fixed landscape by dispersal. The first is deterministic, while the second adds demographic stochasticity to allow ecological drift. Finally, the third model is a true metacommunity model with dispersal between a large number of local patches, which allows feedback between local and regional scales and captures the well studied metacommunity paradigms as special cases. Unlike previous simulation models, our metacommunity model allows the numerical calculation of equilibria and invasion criteria to precisely determine the outcome of competition at the regional scale. We show that both dispersal and stochasticity can lead to regional outcomes that are different than predicted by the classic Lotka–Volterra competition model. Regional exclusion can occur when the nonspatial model predicts coexistence or founder control, due to ecological drift or asymmetric stochastic switching between basins of attraction, respectively. Regional coexistence can result from local coexistence mechanisms or through competition‐colonization or successional‐niche trade‐offs. Larger dispersal rates are typically competitively advantageous, except in the case of local founder control, which can favor intermediate dispersal rates. Broadly, our models demonstrate the importance of feedback between local and regional scales in competitive metacommunities and provide a unifying framework for understanding how selection, drift, and dispersal jointly shape ecological communities.

     
    more » « less