skip to main content


Title: Oscillations of highly magnetized non-rotating neutron stars
Abstract

Highly magnetized neutron stars are promising candidates to explain some of the most peculiar astronomical phenomena, for instance, fast radio bursts, gamma-ray bursts, and superluminous supernovae. Pulsations of these highly magnetized neutron stars are also speculated to produce detectable gravitational waves. In addition, pulsations are important probes of the structure and equation of state of the neutron stars. The major challenge in studying the pulsations of highly magnetized neutron stars is the demanding numerical cost of consistently solving the nonlinear Einstein and Maxwell equations under minimum assumptions. With the recent breakthroughs in numerical solvers, we investigate pulsation modes of non-rotating neutron stars which harbour strong purely toroidal magnetic fields of 1015−17G through two-dimensional axisymmetric general-relativistic magnetohydrodynamics simulations. We show that stellar oscillations are insensitive to magnetization effects until the magnetic to binding energy ratio goes beyond 10%, where the pulsation mode frequencies are strongly suppressed. We further show that this is the direct consequence of the decrease in stellar compactness when the extreme magnetic fields introduce strong deformations of the neutron stars.

 
more » « less
Award ID(s):
2020275
NSF-PAR ID:
10387511
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Physics
Volume:
5
Issue:
1
ISSN:
2399-3650
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We consider topological configurations of the magnetically coupled spinning stellar binaries (e.g., merging neutron stars or interacting star–planet systems). We discuss conditions when the stellar spins and the orbital motion nearly “compensate” each other, leading to very slow overall winding of the coupled magnetic fields; slowly winding configurations allow gradual accumulation of magnetic energy, which is eventually released in a flare when the instability threshold is reached. We find that this slow winding can be global and/or local. We describe the topology of the relevant space F = T 1 S 2 as the unit tangent bundle of the two-sphere and find conditions for slowly winding configurations in terms of magnetic moments, spins, and orbital momentum. These conditions become ambiguous near the topological bifurcation points; in certain cases, they also depend on the relative phases of the spin and orbital motions. In the case of merging magnetized neutron stars, if one of the stars is a millisecond pulsar, spinning at ∼10 ms, the global resonance ω 1 + ω 2 = 2Ω (spin-plus beat is two times the orbital period) occurs approximately one second before the merger; the total energy of the flare can be as large as 10% of the total magnetic energy, producing bursts of luminosity ∼10 44 erg s −1 . Higher order local resonances may have similar powers, since the amount of involved magnetic flux tubes may be comparable to the total connected flux. 
    more » « less
  2. ABSTRACT

    A repeating source of fast radio bursts (FRBs) is recently discovered from a globular cluster of M81. Association with a globular cluster (or other old stellar systems) suggests that strongly magnetized neutron stars, which are the most likely objects responsible for FRBs, are born not only when young massive stars undergo core-collapse, but also by mergers of old white dwarfs. We find that the fractional contribution to the total FRB rate by old stellar populations is at least a few per cent, and the precise fraction can be constrained by FRB searches in the directions of nearby galaxies, both star-forming and elliptical ones. Using very general arguments, we show that the activity time of the M81-FRB source is between 104 and 106 yr, and more likely of the order of 105 yr. The energetics of radio outbursts put a lower limit on the magnetic field strength of 10$^{13}\,$G, and the spin period $\gtrsim 0.2\,$s, thereby ruling out the source being a milli-second pulsar. The upper limit on the persistent X-ray luminosity (provided by Chandra), together with the high FRB luminosity and frequent repetitions, severely constrains (or rules out) the possibility that the M81-FRB is a scaled-up version of giant pulses from Galactic pulsars. Finally, the 50-ns variability time of the FRB light curve suggests that the emission is produced in a compact region inside the neutron star magnetosphere, as it cannot be accounted for when the emission is at distances $\gtrsim 10^{10}\rm \, cm$.

     
    more » « less
  3. Abstract

    RCB stars areL≈ 104Lsolar-mass objects that can exhibit large periods of extinction from dust ejection episodes. Many exhibit semi-regular pulsations in the range of 30–50 days with semi-amplitudes of 0.05–0.3 mag. Space-based photometry has discovered that solar-like oscillations are ubiquitous in hydrogen-dominated stars that have substantial outer convective envelopes, so we explore the hypothesis that the pulsations in RCB stars and the closely related dustless hydrogen-deficient carbon (dLHdC) stars, which have large convective outer envelopes of nearly pure helium, have a similar origin. Through stellar modeling and pulsation calculations, we find that the observed periods and amplitudes of these pulsations follows the well-measured phenomenology of their H-rich brethren. In particular, we show that the observed modes are likely of angular ordersl= 0, 1, and 2 and predominantly of an acoustic nature (i.e.,p-modes with low radial order). The modes with largest amplitude are near the acoustic cutoff frequency appropriately rescaled to the helium-dominated envelope, and the observed amplitudes are consistent with that seen in high-luminosity (L> 103L) H-rich giants. We also find that forTeff≳ 5400 K, an hydrogen-deficient carbon stellar model exhibits a radiative layer between two outer convective zones, creating ag-mode cavity that supports much longer period (≈100 days) oscillations. Our initial work was focused primarily on the adiabatic modes, but we expect that subsequent space-based observations of these targets (e.g., with TESS or Plato) are likely to lead to a larger set of detected frequencies that would allow for a deeper study of the interiors of these rare stars.

     
    more » « less
  4. Aims . In this work, we study the structure of neutron stars under the effect of a poloidal magnetic field and determine the limiting largest magnetic field strength that induces a deformation such that the ratio between the polar and equatorial radii does not exceed 2%. We consider that, under these conditions, the description of magnetic neutron stars in the spherical symmetry regime is still satisfactory. Methods . We described different compositions of stars (nucleonic, hyperonic, and hybrid) using three state-of-the-art relativistic mean field models (NL3 ω ρ , MBF, and CMF, respectively) for the microscopic description of matter, all in agreement with standard experimental and observational data. The structure of stars was described by the general relativistic solution of both Einstein’s field equations assuming spherical symmetry and Einstein-Maxwell’s field equations assuming an axi-symmetric deformation. Results . We find a limiting magnetic moment on the order of 2 × 10 31 Am 2 , which corresponds to magnetic fields on the order of 10 16 G at the surface and 10 17 G at the center of the star, above which the deformation due to the magnetic field is above 2%, and therefore not negligible. We show that the intensity of the magnetic field developed in the star depends on the equation of state (EoS), and, for a given baryonic mass and fixed magnetic moment, larger fields are attained with softer EoS. We also show that the appearance of exotic degrees of freedom, such as hyperons or a quark core, is disfavored in the presence of a very strong magnetic field. As a consequence, a highly magnetized nucleonic star may suffer an internal conversion due to the decay of the magnetic field, which could be accompanied by a sudden cooling of the star or a gamma ray burst. 
    more » « less
  5. ABSTRACT

    Strong magnetic fields are expected to significantly modify the pulsation frequencies of waves propagating in the cores of red giants or in the radiative envelopes of intermediate- and high-mass main-sequence stars. We calculate the g-mode frequencies of stars with magnetic dipole fields which are aligned with their rotational axes, treating both the Lorentz and Coriolis forces non-perturbatively. We provide a compact asymptotic formula for the g-mode period spacing and universally find that strong magnetism decreases this period spacing substantially more than is predicted by perturbation theory. These results are validated with explicit numerical mode calculations for realistic stellar models. The approach we present is highly versatile: once the eigenvalues λ of a certain differential operator are pre-computed as a function of the magnetogravity and rotational frequencies (in units of the mode frequency), the non-perturbative impact of the Coriolis and Lorentz forces is understood under a broad domain of validity and is readily incorporated into asteroseismic modelling.

     
    more » « less