- Publication Date:
- NSF-PAR ID:
- 10387643
- Journal Name:
- Earth Surface Dynamics
- Volume:
- 10
- Issue:
- 5
- Page Range or eLocation-ID:
- 875 to 894
- ISSN:
- 2196-632X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract. The location of drainage divides sets the distribution of discharge, erosion, and sediment flux between neighboring basins and may shift through time in response to changing tectonic and climatic conditions. Major divides commonly coincide with ridgelines, where the drainage area is small and increases gradually downstream. In such settings, divide migration is attributed to slope imbalance across the divide that induces erosion rate gradients. However, in some tectonically affected regions, low-relief divides, which are also called wind gaps, abound in elongated valleys whose drainage area distribution is set by the topology of large, potentially avulsing side tributaries. In this geometry, distinct dynamics and rates of along-valley wind-gap migration are expected, but this process remains largely unexplored. Inspired by field observations, we investigate along-valley wind-gap migration by simulating the evolution of synthetic and natural landscapes, and we show that confluences with large side tributaries influence migration rate and extent. Such confluences facilitate stable wind-gap locations that deviate from intuitive expectations based on symmetry considerations. Avulsions of side tributaries can perturb stable wind-gap positions, and avulsion frequency governs the velocity of wind-gap migration. Overall, our results suggest that tributaries and their avulsions may play a critical role in setting the ratemore »
-
Dendritic, i.e., tree-like, river networks are ubiquitous features on Earth’s landscapes; however, how and why river networks organize themselves into this form are incompletely understood. A branching pattern has been argued to be an optimal state. Therefore, we should expect models of river evolution to drastically reorganize (suboptimal) purely nondendritic networks into (more optimal) dendritic networks. To date, current physically based models of river basin evolution are incapable of achieving this result without substantial allogenic forcing. Here, we present a model that does indeed accomplish massive drainage reorganization. The key feature in our model is basin-wide lateral incision of bedrock channels. The addition of this submodel allows for channels to laterally migrate, which generates river capture events and drainage migration. An important factor in the model that dictates the rate and frequency of drainage network reorganization is the ratio of two parameters, the lateral and vertical rock erodibility constants. In addition, our model is unique from others because its simulations approach a dynamic steady state. At a dynamic steady state, drainage networks persistently reorganize instead of approaching a stable configuration. Our model results suggest that lateral bedrock incision processes can drive major drainage reorganization and explain apparent long-lived transience inmore »
-
Abstract. To explore the sensitivity of rivers to blocking from landslidedebris, we exploit two similar geomorphic settings in California'sFranciscan mélange where slow-moving landslides, often referred to asearthflows, impinge on river channels with drainage areas that differ by afactor of 30. Analysis of valley widths and river long profiles over∼19 km of Alameda Creek (185 km2 drainage area) andArroyo Hondo (200 km2 drainage area) in central California shows avery consistent picture in which earthflows that intersect these channelsforce tens of meters of gravel aggradation for kilometers upstream, leadingto apparently long-lived sediment storage and channel burial at these sites.In contrast, over a ∼30 km section of the Eel River (5547 km2 drainage area), there are no knickpoints or aggradation upstreamof locations where earthflows impinge on its channel. Hydraulic andhydrologic data from United States Geological Survey (USGS) gages on Arroyo Hondo and the Eel River, combinedwith measured size distributions of boulders input by landslides for bothlocations, suggest that landslide derived boulders are not mobile at eithersite during the largest floods (>2-year recurrence) with field-measured flow depths. We therefore argue that boulder transport capacity isan unlikely explanation for the observed difference in sensitivity tolandslide inputs. At the same time, we find that earthflow fluxes per unitchannel width are nearlymore »
-
Abstract Lakes represent as much as ∼25% of the total land surface area in lowland permafrost regions. Though decreasing lake area has become a widespread phenomenon in permafrost regions, our ability to forecast future patterns of lake drainage spanning gradients of space and time remain limited. Here, we modeled the drivers of gradual (steady declining lake area) and catastrophic (temporally abrupt decrease in lake area) lake drainage using 45 years of Landsat observations (i.e. 1975–2019) across 32 690 lakes spanning climate and environmental gradients across northern Alaska. We mapped lake area using supervised support vector machine classifiers and object based image analyses using five-year Landsat image composites spanning 388 968 km2. Drivers of lake drainage were determined with boosted regression tree models, using both static (e.g. lake morphology, proximity to drainage gradient) and dynamic predictor variables (e.g. temperature, precipitation, wildfire). Over the past 45 years, gradual drainage decreased lake area between 10% and 16%, but rates varied over time as the 1990s recorded the highest rates of gradual lake area losses associated with warm periods. Interestingly, the number of catastrophically drained lakes progressively decreased at a rate of ∼37% decade−1from 1975–1979 (102–273 lakes draining year−1) to 2010–2014 (3–8 lakes drainingmore »
-
Abstract The increased power consumption and continued miniaturization of high-powered electronic components have presented many challenges to their thermal management. To improve the efficiency and reliability of these devices, the high amount of heat that they generate must be properly removed. In this paper, a three-dimensional numerical model has been developed and experimentally validated for several manifold heat sink designs. The goal was to enhance the heat sink's thermal performance while reducing the required pumping power by lowering the pressure drop across the heat sink. The considered designs were benchmarked to a commercially available heat sink in terms of their thermal and hydraulic performances. The proposed manifolds were designed to distribute fluid through alternating inlet and outlet branched internal channels. It was found that using the manifold design with 3 channels reduced the thermal resistance from 0.061 to 0.054 °C/W with a pressure drop reduction of 0.77 kPa from the commercial cold plate. A geometric parametric study was performed to investigate the effect of the manifold's internal channel width on the thermohydraulic performance of the proposed designs. It was found that the thermal resistance decreased as the manifold's channel width decreased, up until a certain width value, below which the thermal resistancemore »