skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Uncertainty-driven Sampling-based Online Coverage Path Planner for Seabed Mapping using Marine Robots
Seabed mapping is a common application for marine robots, and it is often framed as a coverage path planning problem in robotics. During a robot-based survey, the coverage of perceptual sensors (e.g., cameras, LIDARS and sonars) changes, especially in underwater environments. Therefore, online path planning is needed to accommodate the sensing changes in order to achieve the desired coverage ratio. In this paper, we present a sensing confidence model and a uncertainty-driven sampling-based online coverage path planner (SO-CPP) to assist in-situ robot planning for seabed mapping and other survey-type applications. Different from conventional lawnmower pattern, the SO-CPP will pick random points based on a probability map that is updated based on in-situ sonar measurements using a sensing confidence model. The SO-CPP then constructs a graph by connecting adjacent nodes with edge costs determined using a multi-variable cost function. Finally, the SO-CPP will select the best route and generate the desired waypoint list using a multi-variable objective function. The SO-CPP has been evaluated in a simulation environment with an actual bathymetric map, a 6-DOF AUV dynamic model and a ray-tracing sonar model. We have performed Monte Carlo simulations with a variety of environmental settings to validate that the SO-CPP is applicable to a convex workspace, a non-convex workspace, and unknown occupied workspace. So-CPP is found outperform regular lawnmower pattern survey by reducing the resulting traveling distance by upto 20%. Besides that, we observed that the prior knowledge about the obstacles in the environment has minor effects on the overall traveling distance. In the paper, limitation and real-world implementation are also discussed along with our plan in the future.  more » « less
Award ID(s):
1945924
PAR ID:
10387713
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2022 IEEE/OES Autonomous Underwater Vehicles Symposium (AUV)
Page Range / eLocation ID:
1 to 7
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mapping a desired 2D pattern onto a curved surface has many applications. This includes motion planning for mobile robots to perform coverage path planing, robot end effector trajectory design for tasks such as printing, depositing, wielding on a 3D surface. This problem becomes more difficult if we want the mapped pattern to keep the properties of the original pattern (i.e, least possible mapping distortion), and pass over some desired points and/or remain bounded in a specific region on the surface. In this paper, we apply surface parameterization and mapping distortion analysis, which is rarely used in robot motion planning works, to map a pattern onto 3D surface. To meet additional goals such as passing over certain points, a planar mapping determined by constrained optimization is employed on the original pattern. Our focus is on printing/depositing materials on curved surfaces, and simulations and experiments are provided to confirm the performance of the approach. 
    more » « less
  2. We present a dynamic multi-robot mapping framework that combines Blockchain technology for swarm management with a Hybrid Ant Colony Optimization (HACO) algorithm for path planning. Blockchain-based swarm contracts enable decentralized, transparent, and secure task allocation, acceptance, tracking, and reward distribution among multiple robots. HACO facilitates efficient path planning in complex environments through cooperative and competitive strategies. We deploy multiple LiDAR-equipped Unitree Go2 dog robots to collaboratively and competitively map divided sub-areas, with task reassignment based on real-time feedback and the selected strategy. In cooperative mode, robots share data to boost efficiency and accuracy; in competitive mode, they work independently to reduce redundancy and optimize resources. Swarm contracts also verify full sub-area coverage via the merged map. Results show that integrating blockchain-based management with HACO significantly enhances mapping performance, delivering a robust and scalable solution for realworld multi-robot systems. 
    more » « less
  3. In the realm of real-time environmental monitoring and hazard detection, multi-robot systems present a promising solution for exploring and mapping dynamic fields, particularly in scenarios where human intervention poses safety risks. This research introduces a strategy for path planning and control of a group of mobile sensing robots to efficiently explore and reconstruct a dynamic field consisting of multiple non-overlapping diffusion sources. Our approach integrates a reinforcement learning-based path planning algorithm to guide the multi-robot formation in identifying diffusion sources, with a clustering-based method for destination selection once a new source is detected, to enhance coverage and accelerate exploration in unknown environments. Simulation results and real-world laboratory experiments demonstrate the effectiveness of our approach in exploring and reconstructing dynamic fields. This study advances the field of multi-robot systems in environmental monitoring and has practical implications for rescue missions and field explorations. 
    more » « less
  4. We propose a predictive runtime monitoring framework that forecasts the distribution of future positions of mobile robots in order to detect and avoid impending property violations such as collisions with obstacles or other agents. Our approach uses a restricted class of temporal logic formulas to represent the likely intentions of the agents along with a combination of temporal logic-based optimal cost path planning and Bayesian inference to compute the probability of these intents given the current trajectory of the robot. First, we construct a large but finite hypothesis space of possible intents represented as temporal logic formulas whose atomic propositions are derived from a detailed map of the robot’s workspace. Next, our approach uses real-time observations of the robot’s position to update a distribution over temporal logic formulae that represent its likely intent. This is performed by using a combination of optimal cost path planning and a Boltzmann noisy rationality model. In this manner, we construct a Bayesian approach to evaluating the posterior probability of various hypotheses given the observed states and actions of the robot. Finally, we predict the future position of the robot by drawing posterior predictive samples using a Monte-Carlo method. We evaluate our framework using two different trajectory datasets that contain multiple scenarios implementing various tasks. The results show that our method can predict future positions precisely and efficiently, so that the computation time for generating a prediction is a tiny fraction of the overall time horizon. 
    more » « less
  5. Autonomous survey and aerial photogrammetry applications require solving a path planning problem that ensures sensor coverage over a specified area. In this work, we provide a multi-robot path planning method that can obtain this coverage over an arbitrary area of interest. We extend our previous method, path optimization for population counting with overhead robotic networks (POPCORN), by a divide-and-conquer scheme, split and link tiles (SALT), which drastically decreases the time needed for route planning. These POPCORN instances can be computed in parallel and combined with SALT in a scalable manner to produce coverage paths over very large areas of interest. To demonstrate this algorithm’s capabilities, we implemented our planning algorithm with a team of drones to conduct multiple photographic aerial wildlife surveys of the Cape Crozier Adélie penguin rookery on Ross Island, Antarctica, one of the largest Adélie penguin colonies in the world. The colony, which contains over 300,000 nesting pairs and spans over 2 km, was surveyed in about 3 hours. In contrast, previous human-piloted single-drone surveys of the same colony required over 2 days to complete. We also have deployed our survey system at several islets at Mono Lake, California, to survey a California gull colony as well as at a 2000-acre ranch in Marin, California. We provide this survey path planning tool as an open-source software package named wadl. 
    more » « less