skip to main content


Title: Geometric Trajectory Planning for Robot Motion Over a 3D Surface
Mapping a desired 2D pattern onto a curved surface has many applications. This includes motion planning for mobile robots to perform coverage path planing, robot end effector trajectory design for tasks such as printing, depositing, wielding on a 3D surface. This problem becomes more difficult if we want the mapped pattern to keep the properties of the original pattern (i.e, least possible mapping distortion), and pass over some desired points and/or remain bounded in a specific region on the surface. In this paper, we apply surface parameterization and mapping distortion analysis, which is rarely used in robot motion planning works, to map a pattern onto 3D surface. To meet additional goals such as passing over certain points, a planar mapping determined by constrained optimization is employed on the original pattern. Our focus is on printing/depositing materials on curved surfaces, and simulations and experiments are provided to confirm the performance of the approach.  more » « less
Award ID(s):
1563424
NSF-PAR ID:
10161917
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ASME 2019 Dynamic Systems and Control Conference
Volume:
3
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Seabed mapping is a common application for marine robots, and it is often framed as a coverage path planning problem in robotics. During a robot-based survey, the coverage of perceptual sensors (e.g., cameras, LIDARS and sonars) changes, especially in underwater environments. Therefore, online path planning is needed to accommodate the sensing changes in order to achieve the desired coverage ratio. In this paper, we present a sensing confidence model and a uncertainty-driven sampling-based online coverage path planner (SO-CPP) to assist in-situ robot planning for seabed mapping and other survey-type applications. Different from conventional lawnmower pattern, the SO-CPP will pick random points based on a probability map that is updated based on in-situ sonar measurements using a sensing confidence model. The SO-CPP then constructs a graph by connecting adjacent nodes with edge costs determined using a multi-variable cost function. Finally, the SO-CPP will select the best route and generate the desired waypoint list using a multi-variable objective function. The SO-CPP has been evaluated in a simulation environment with an actual bathymetric map, a 6-DOF AUV dynamic model and a ray-tracing sonar model. We have performed Monte Carlo simulations with a variety of environmental settings to validate that the SO-CPP is applicable to a convex workspace, a non-convex workspace, and unknown occupied workspace. So-CPP is found outperform regular lawnmower pattern survey by reducing the resulting traveling distance by upto 20%. Besides that, we observed that the prior knowledge about the obstacles in the environment has minor effects on the overall traveling distance. In the paper, limitation and real-world implementation are also discussed along with our plan in the future. 
    more » « less
  2. Force sensors play an important role in the biomedical devices industry, especially in motion- and pressure-related devices. Such sensors are designed to collect force or pressure data by converting it into electrical signals. The data can then be sent to and analyzed by a local or cloud-based processing unit. It is vital that the sensors can be fabricated in a way that time efficiency, cost efficiency, and quality are all maximized. The advent of three-dimensional (3D) printing has greatly facilitated prototyping and customized manufacturing, as compared to older crafting methods (such as welding and woodworking), 3D printing requires less skill and involves less costly materials making it much more time- and cost-efficient. Technological advancements have also improved the quality of the actual sensing materials used in sensor-based devices, and notably, carbon-based materials have become increasingly favored for use as sensing elements. In the presented sensor, the modern sensor fabrication methods of 3D printing and using carbon materials as sensing elements are combined. The sensor presented as a proof of the above concepts is a cantilever flex sensor. The sensor consists of a 30 mm-long cantilever extending from a 2.5 mm-thick wall, with a second wall of the same thickness parallel to the cantilever. After designing this structure and printing it using a 3D printer, the top surface of the cantilever was coated with a thin layer of conductive carbon paste and two copper wires were stripped and soldered to a pair of copper alligator clips, to be used for testing purposes. To test the sensor, the two copper wires were clipped onto the sensor (Figure 1A) and each wire was connected to a multimeter probe on the end opposite of the alligator clip. Then, using a set of four through holes in the parallel wall (along with a slotted rod), the tip of the cantilever was pressed down to an angle of 5, 10, 15, or 20 degrees (Figures 1B, 1C, 1D, and 1E, respectively) below the original plane of the cantilever and held there for 2 minutes. The resistance between the ends of the cantilever was measured throughout each trial by the multimeter, and the results (Figure 1F) for each angle were compiled and analyzed to determine the effect of each depression angle on impedance change, and thus, the overall effectiveness of the sensor. In the future, a notable improvement would be miniaturizing the sensor to facilitate in integration of the sensor in wearable and biomedical devices. 
    more » « less
  3. Chong, Baxi ; Wang, Tianyu ; Lin, Bo ; Li, Shengkai ; Choset, Howie ; Blekherman, Grigoriy ; Goldman, Daniel (Ed.)
    Abstract—Contact planning is crucial to the locomotion per-formance of limbless robots. Typically, the pattern by which contact is made and broken between the mechanism and its environment determines the motion of the robot. The design of these patterns, often called contact patterns, is a difficult problem. In previous work, the prescription of contact patterns was derived from observations of biological systems or determined empirically from black-box optimization algorithms. However, such contact pattern prescription is only applicable to specific mechanisms, and is challenging to generalize. For example, the stable and effective contact pattern prescribed for a 12-link limbless robot can be neither stable nor effective for a 6-link limbless robot. In this paper, using a geometric motion planning scheme, we develop a framework to design, optimize, and analyze contact patterns to generate effective motion in the desired directions. Inspired by prior work in geometric mechanics, we separate the configuration space into a shape space (the internal joint angles), a contact state space, and a position space; then we optimize the function that couples the contact state space and the shape space. Our framework provides physical insights into the contact pattern design and reveals principles of empirically derived contact pattern prescriptions. Applying this framework, we can not only control the direction of motion of a 12-link limbless robot by modulating the contact patterns, but also design effective sidewinding gaits for robots with fewer motors (e.g., a 6-link robot). We test our designed gaits by robophysical experiments and obtain excellent agreement. We expect our scheme can be broadly applicable to robots which make/break contact. 
    more » « less
  4. Abstract

    Polymeric systems displaying spontaneous formation of surface wrinkling patterns are useful for a wide range of applications, such as diffraction gratings, flexible electronics, smart adhesives, optical devices, and cell culture platforms. Conventional fabrication techniques for wrinkling patterns involves multitude of processing steps and impose significant limitations on fabrication of hierarchical patterns, creating wrinkles on 3D and nonplanar structures, the scalability of the manufacturing process, and the integration of wrinkle fabrication process into a continuous manufacturing process. In this work, 4D printing of surface morphing hydrogels enabling direct fabrication of wrinkling patterns on curved and/or 3D structures with user‐defined and spatially controlled pattern geometry and size is reported. The key to successful printing is to tailor the photopolymerization time and partial crosslinking time of the hydrogel inks. The interplay between crosslinker concentration and postprinting crosslinking time allow for the control over wrinkling morphology and the characteristic size of the patterns. The pattern alignment is controlled by the print strut size—the size of the solid material extruded from the print nozzle in the form of a line. To demonstrate the utility of the approach, tunable optical devices, a solvent/humidity sensor for microchips, and cell culture platforms to control stem cell shape are fabricated.

     
    more » « less
  5. null (Ed.)
    Synopsis Plant movements are of increasing interest for biomimetic approaches where hinge-free compliant mechanisms (flexible structures) for applications, for example, in architecture, soft robotics, and medicine are developed. In this article, we first concisely summarize the knowledge on plant movement principles and show how the different modes of actuation, that is, the driving forces of motion, can be used in biomimetic approaches for the development of motile technical systems. We then emphasize on current developments and breakthroughs in the field, that is, the technical implementation of plant movement principles through additive manufacturing, the development of structures capable of tracking movements (tropisms), and the development of structures that can perform multiple movement steps. Regarding the additive manufacturing section, we present original results on the successful transfer of several plant movement principles into 3D printed hygroscopic shape-changing structures (“4D printing”). The resulting systems include edge growth-driven actuation (as known from the petals of the lily flower), bending scale-like structures with functional bilayer setups (inspired from pinecones), modular aperture architectures (as can be similarly seen in moss peristomes), snap-through elastic instability actuation (as known from Venus flytrap snap-traps), and origami-like curved-folding kinematic amplification (inspired by the carnivorous waterwheel plant). Our novel biomimetic compliant mechanisms highlight the feasibility of modern printing techniques for designing and developing versatile tailored motion responses for technical applications. We then focus on persisting challenges in the field, that is, how to speed-boost intrinsically slow hydraulically actuated structures and how to achieve functional resilience and robustness, before we propose the establishment of a motion design catalog in the conclusion. 
    more » « less