skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Scheduling mechanisms to control the spread of COVID-19
We study scheduling mechanisms that explore the trade-off between containing the spread of COVID-19 and performing in-person activity in organizations. Our mechanisms, referred to as group scheduling , are based on partitioning the population randomly into groups and scheduling each group on appropriate days with possible gaps (when no one is working and all are quarantined). Each group interacts with no other group and, importantly, any person who is symptomatic in a group is quarantined. We show that our mechanisms effectively trade-off in-person activity for more effective control of the COVID-19 virus spread. In particular, we show that a mechanism which partitions the population into two groups that alternatively work in-person for five days each, flatlines the number of COVID-19 cases quite effectively, while still maintaining in-person activity at 70% of pre-COVID-19 level. Other mechanisms that partitions into two groups with less continuous work days or more spacing or three groups achieve even more aggressive control of the virus at the cost of a somewhat lower in-person activity (about 50%). We demonstrate the efficacy of our mechanisms by theoretical analysis and extensive experimental simulations on various epidemiological models based on real-world data.  more » « less
Award ID(s):
1633720
PAR ID:
10387805
Author(s) / Creator(s):
; ; ; ;
Editor(s):
Ragusa, Maria Alessandra
Date Published:
Journal Name:
PLOS ONE
Volume:
17
Issue:
9
ISSN:
1932-6203
Page Range / eLocation ID:
e0272739
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Borri, Alessandro (Ed.)
    Ever since the outbreak of the COVID-19 epidemic, various public health control strategies have been proposed and tested against the coronavirus SARS-CoV-2. We study three specific COVID-19 epidemic control models: the susceptible, exposed, infectious, recovered (SEIR) model with vaccination control; the SEIR model with shield immunity control; and the susceptible, un-quarantined infected, quarantined infected, confirmed infected (SUQC) model with quarantine control. We express the control requirement in metric temporal logic (MTL) formulas (a type of formal specification languages) which can specify the expected control outcomes such as “ the deaths from the infection should never exceed one thousand per day within the next three months ” or “ the population immune from the disease should eventually exceed 200 thousand within the next 100 to 120 days ”. We then develop methods for synthesizing control strategies with MTL specifications. To the best of our knowledge, this is the first paper to systematically synthesize control strategies based on the COVID-19 epidemic models with formal specifications. We provide simulation results in three different case studies: vaccination control for the COVID-19 epidemic with model parameters estimated from data in Lombardy, Italy; shield immunity control for the COVID-19 epidemic with model parameters estimated from data in Lombardy, Italy; and quarantine control for the COVID-19 epidemic with model parameters estimated from data in Wuhan, China. The results show that the proposed synthesis approach can generate control inputs such that the time-varying numbers of individuals in each category (e.g., infectious, immune) satisfy the MTL specifications. The results also show that early intervention is essential in mitigating the spread of COVID-19, and more control effort is needed for more stringent MTL specifications. For example, based on the model in Lombardy, Italy, achieving less than 100 deaths per day and 10000 total deaths within 100 days requires 441.7% more vaccination control effort than achieving less than 1000 deaths per day and 50000 total deaths within 100 days. 
    more » « less
  2. Grilli, Jacopo (Ed.)
    A major strategy to prevent the spread of COVID-19 is the limiting of in-person contacts. However, limiting contacts is impractical or impossible for the many disabled people who do not live in care facilities but still require caregivers to assist them with activities of daily living. We seek to determine which interventions can best prevent infections of disabled people and their caregivers. To accomplish this, we simulate COVID-19 transmission with a compartmental model that includes susceptible, exposed, asymptomatic, symptomatically ill, hospitalized, and removed/recovered individuals. The networks on which we simulate disease spread incorporate heterogeneity in the risk levels of different types of interactions, time-dependent lockdown and reopening measures, and interaction distributions for four different groups (caregivers, disabled people, essential workers, and the general population). Of these groups, we find that the probability of becoming infected is largest for caregivers and second largest for disabled people. Consistent with this finding, our analysis of network structure illustrates that caregivers have the largest modal eigenvector centrality of the four groups. We find that two interventions—contact-limiting by all groups and mask-wearing by disabled people and caregivers—most reduce the number of infections in disabled and caregiver populations. We also test which group of people spreads COVID-19 most readily by seeding infections in a subset of each group and comparing the total number of infections as the disease spreads. We find that caregivers are the most potent spreaders of COVID-19, particularly to other caregivers and to disabled people. We test where to use limited infection-blocking vaccine doses most effectively and find that (1) vaccinating caregivers better protects disabled people from infection than vaccinating the general population or essential workers and that (2) vaccinating caregivers protects disabled people from infection about as effectively as vaccinating disabled people themselves. Our results highlight the potential effectiveness of mask-wearing, contact-limiting throughout society, and strategic vaccination for limiting the exposure of disabled people and their caregivers to COVID-19. 
    more » « less
  3. The COVID-19 preparedness plans by the Centers for Disease Control and Prevention strongly underscores the need for efficient and effective testing strategies. This, in turn, calls upon the design and development of statistical sampling and testing of COVID-19 strategies. However, the evaluation of operational details requires a detailed representation of human behaviors in epidemic simulation models. Traditional epidemic simulations are mainly based upon system dynamic models, which use differential equations to study macro-level and aggregated behaviors of population subgroups. As such, individual behaviors (e.g., personal protection, commute conditions, social patterns) can’t be adequately modeled and tracked for the evaluation of health policies and action strategies. Therefore, this paper presents a network-based simulation model to optimize COVID-19 testing strategies for effective identifications of virus carriers in a spatial area. Specifically, we design a data-driven risk scoring system for statistical sampling and testing of COVID-19. This system collects real-time data from simulated networked behaviors of individuals in the spatial network to support decision-making during the virus spread process. Experimental results showed that this framework has superior performance in optimizing COVID-19 testing decisions and effectively identifying virus carriers from the population. 
    more » « less
  4. Background. Vaccine misinformation has been widely spread on social media, but attempts to combat it have not taken advantage of the attributes of social media platforms for health education. Methods. The objective was to test the efficacy of moderated social media discussions about COVID-19 vaccines in private Facebook groups. Unvaccinated U.S. adults were recruited using Amazon’s Mechanical Turk and randomized. In the intervention group, moderators posted two informational posts per day for 4 weeks and engaged in relationship-building interactions with group members. In the control group, participants received a referral to Facebook’s COVID-19 Information Center. Follow-up surveys with participants (N = 478) were conducted 6 weeks post-enrollment. Results. At 6 weeks follow-up, no differences were found in vaccination rates. Intervention participants were more likely to show improvements in their COVID-19 vaccination intentions (vs. stay same or decline) compared with control (p = .03). They also improved more in their intentions to encourage others to vaccinate for COVID-19. There were no differences in COVID-19 vaccine confidence or intentions between groups. General vaccine and responsibility to vaccinate were higher in the intervention compared with control. Most participants in the intervention group reported high levels of satisfaction. Participants engaged with content (e.g., commented, reacted) 11.8 times on average over the course of 4 weeks. Conclusions. Engaging with vaccine-hesitant individuals in private Facebook groups improved some COVID-19 vaccine-related beliefs and represents a promising strategy. 
    more » « less
  5. null (Ed.)
    The policy induced decline of human mobility has been recognised as effective in controlling the spread of COVID-19, especially in the initial stage of the outbreak, although the relationship among mobility, policy implementation, and virus spread remains contentious. Coupling the data of confirmed COVID-19 cases with the Google mobility data in Australia, we present a state-level empirical study to: (1) inspect the temporal variation of the COVID-19 spread and the change of human mobility adherent to social restriction policies; (2) examine the extent to which different types of mobility are associated with the COVID-19 spread in eight Australian states/territories; and (3) analyse the time lag effect of mobility restriction on the COVID-19 spread. We find that social restriction policies implemented in the early stage of the pandemic controlled the COVID-19 spread effectively; the restriction of human mobility has a time lag effect on the growth rates of COVID-19, and the strength of the mobility-spread correlation increases up to seven days after policy implementation but decreases afterwards. The association between human mobility and COVID-19 spread varies across space and time and is subject to the types of mobility. Thus, it is important for government to consider the degree to which lockdown conditions can be eased by accounting for this dynamic mobility-spread relationship. 
    more » « less