skip to main content


Title: The Arctic Surface Heating Efficiency of Tropospheric Energy Flux Events
Abstract This paper examines the processes that drive Arctic anomalous surface warming and sea ice loss during winter-season tropospheric energy flux events, synoptic periods of increased tropospheric energy flux convergence ( F trop ), using the NASA MERRA-2 reanalysis. During an event, a poleward anomaly in F trop initially increases the sensible and latent energy of the Arctic troposphere; as the warm and moist troposphere loses heat, the anomalous energy source is balanced by a flux upward across the tropopause and a downward net surface flux. A new metric for the Arctic surface heating efficiency ( E trop ) is defined, which measures the fraction of the energy source that reaches the surface. Composites of high-, medium-, and low-efficiency events help identify key physical factors, including the vertical structure of F trop and Arctic surface preconditioning. In high-efficiency events ( E trop ≥ 0.63), a bottom-heavy poleward F trop occurs in the presence of an anomalously warm and unstratified Arctic—a consequence of decreased sea ice—resulting in increased vertical mixing, enhanced near-surface warming and moistening, and further sea ice loss. Smaller E trop , and thus weaker surface impacts, are found in events with anomalously large initial sea ice extent and more vertically uniform F trop . These differences in E trop are manifested primarily through turbulent heat fluxes rather than downward longwave radiation. The frequency of high-efficiency events has increased from the period 1980–99 to the period 2000–19, contributing to Arctic surface warming and sea ice decline.  more » « less
Award ID(s):
2026863
NSF-PAR ID:
10387909
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Climate
Volume:
35
Issue:
18
ISSN:
0894-8755
Page Range / eLocation ID:
5897 to 5913
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The flux of moist static energy into the polar regions plays a key role in the energy budget and climate of the polar regions. While usually studied from a vertically integrated perspective ( F wall ), this analysis examines its vertical structure, using the NASA-MERRA-2 reanalysis to compute climatological and anomalous fluxes of sensible, latent, and potential energy across 70°N and 65°S for the period 1980–2016. The vertical structure of the climatological flux is bimodal, with peaks in the middle to lower troposphere and middle to upper stratosphere. The near-zero flux at the tropopause defines the boundary between stratospheric ( F strat ) and tropospheric ( F trop ) contributions to F wall . Especially at 70°N, F strat is found to be important to the climatology and variability of F wall , contributing 20.9 W m −2 to F wall (19% of F wall ) during the winter and explaining 23% of the variance of F wall . During winter, an anomalous poleward increase in F strat preceding a sudden stratospheric warming is followed by an increase in outgoing longwave radiation anomalies, with little influence on the surface energy budget of the Arctic. Conversely, a majority of the energy input by an anomalous poleward increase in F trop goes toward warming the Arctic surface. Overall, F trop is found to be a better metric than F wall for evaluating the influence of atmospheric circulations on the Arctic surface climate. 
    more » « less
  2. Abstract

    This study quantifies the contribution to Arctic winter surface warming from changes in the tropospheric energy transport (Ftrop) and the efficiency with whichFtropheats the surface in the RCP8.5 warming scenario of the Community Earth System Model Large Ensemble. A metric for this efficiency,Etrop, measures the fraction of anomalousFtropthat is balanced by an anomalous net surface flux (NSF). Drivers ofEtropare identified in synoptic‐scale events during whichFtropis the dominant driver of NSF.Etropis sensitive to the vertical structure ofFtropand pre‐existing Arctic lower‐tropospheric stability (LTS). In RCP8.5, winter‐meanFtropdecreases from 95.1 to 85.4 W m−2, whileEtropincreases by 5.7%, likely driven by decreased Arctic LTS, indicating an increased coupling betweenFtropand the surface energy budget. The net impact of decreasingFtropand increasing efficiency is a positive 0.7 W m−2contribution to winter‐season surface heating.

     
    more » « less
  3. Abstract

    The Atlantic multidecadal variability (AMV) and Pacific multidecadal variability (PMV) can influence Arctic sea ice and modulate its trend, but to what extent the AMV and PMV can affect Arctic sea ice and which processes are dominant are not well understood. Here, we analyze the Community Earth System Model, version 1, idealized and time-varying pacemaker ensemble simulations to investigate these issues. These experiments show that the sea ice concentration varies mainly over the marginal Arctic Ocean, while the sea ice thickness variations occur over the entire Arctic Ocean. The internal components of AMV and PMV can enhance or weaken the decadal sea ice loss rates over the marginal Arctic Ocean by more than 50%. The AMV- or PMV-induced anomalous atmospheric energy transport and downward longwave radiation related to low clouds (thermodynamical processes) and sea ice motion (dynamical processes) contribute to the Arctic surface air temperature and sea ice concentration and thickness changes. Anomalous oceanic heat flux is mainly a response to rather than a cause of sea ice variations. The dynamic processes contribute to the winter Arctic sea ice variations as much as the thermodynamic processes, but they contribute less (more) to the summer Arctic sea ice variability than the thermodynamic processes over the marginal Arctic Ocean (parts of the central Arctic Ocean). Sea ice loss enhances air–sea heat fluxes, which cause oceanic heat convergence and warm near-surface air and the lower troposphere, which in turn melt more sea ice.

     
    more » « less
  4. Abstract

    Arctic amplification has been attributed predominantly to a positive lapse rate feedback in winter, when boundary layer temperature inversions focus warming near the surface. Predicting high-latitude climate change effectively thus requires identifying the local and remote physical processes that set the Arctic’s vertical warming structure. In this study, we analyze output from the CESM Large Ensemble’s twenty-first-century climate change projection to diagnose the relative influence of two Arctic heating sources, local sea ice loss and remote changes in atmospheric heat transport. Causal effects are quantified with a statistical inference method, allowing us to assess the energetic pathways mediating the Arctic temperature response and the role of internal variability across the ensemble. We find that a step-increase in latent heat flux convergence causes Arctic lower-tropospheric warming in all seasons, while additionally reducing net longwave cooling at the surface. However, these effects only lead to small and short-lived changes in boundary layer inversion strength. By contrast, a step-decrease in sea ice extent in the melt season causes, in fall and winter, surface-amplified warming and weakened boundary layer temperature inversions. Sea ice loss also enhances surface turbulent heat fluxes and cloud-driven condensational heating, which mediate the atmospheric temperature response. While the aggregate effect of many moist transport events and seasons of sea ice loss will be different than the response to hypothetical perturbations, our results nonetheless highlight the mechanisms that alter the Arctic temperature inversion in response to CO2forcing. As sea ice declines, the atmosphere’s boundary layer temperature structure is weakened, static stability decreases, and a thermodynamic coupling emerges between the Arctic surface and the overlying troposphere.

     
    more » « less
  5. Abstract

    The ongoing Arctic warming has been pronounced in winter and has been associated with an increase in downward longwave radiation. While previous studies have demonstrated that poleward moisture flux into the Arctic strengthens downward longwave radiation, less attention has been given to the impact of the accompanying increase in snowfall. Here, utilizing state-of-the-art sea ice models, we show that typical winter snowfall (snow water equivalent) anomalies of around 1.0 cm, accompanied by positive downward longwave radiation anomalies of ∼5 W m−2, can cause basinwide sea ice thinning by around 5 cm in the following spring over the Arctic seas in the Eurasian–Pacific seas. In extreme cases, this is followed by a shrinking of summer ice extent. In the winter of 2016/17, anomalously strong warm, moist air transport combined with ∼2.5-cm increase in snowfall (snow water equivalent) decreased spring ice thickness by ∼10 cm and decreased the following summer sea ice extent by 5%–30%. This study suggests that small changes in the pattern and volume of winter snowfall can strongly impact the sea ice thickness and extent in the following seasons.

     
    more » « less