skip to main content


Title: Leveraging Math Cognition to Combat Health Innumeracy
Rational numbers (i.e., fractions, percentages, decimals, and whole-number frequencies) are notoriously difficult mathematical constructs. Yet correctly interpreting rational numbers is imperative for understanding health statistics, such as gauging the likelihood of side effects from a medication. Several pernicious biases affect health decision-making involving rational numbers. In our novel developmental framework, the natural-number bias—a tendency to misapply knowledge about natural numbers to all numbers—is the mechanism underlying other biases that shape health decision-making. Natural-number bias occurs when people automatically process natural-number magnitudes and disregard ratio magnitudes. Math-cognition researchers have identified individual differences and environmental factors underlying natural-number bias and devised ways to teach people how to avoid these biases. Although effective interventions from other areas of research can help adults evaluate numerical health information, they circumvent the core issue: people’s penchant to automatically process natural-number magnitudes and disregard ratio magnitudes. We describe the origins of natural-number bias and how researchers may harness the bias to improve rational-number understanding and ameliorate innumeracy in real-world contexts, including health. We recommend modifications to formal math education to help children learn the connections among natural and rational numbers. We also call on researchers to consider individual differences people bring to health decision-making contexts and how measures from math cognition might identify those who would benefit most from support when interpreting health statistics. Investigating innumeracy with an interdisciplinary lens could advance understanding of innumeracy in theoretically meaningful and practical ways.  more » « less
Award ID(s):
2103495
NSF-PAR ID:
10388085
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Perspectives on Psychological Science
ISSN:
1745-6916
Page Range / eLocation ID:
174569162210832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The onus on the average person is greater than ever before to make sense of large amounts of readily accessible quantitative information, but the ability and confidence to do so are frequently lacking. Many people lack practical mathematical skills that are essential for evaluating risks, probabilities and numerical outcomes such as survival rates for medical treatments, income from retirement savings plans or monetary damages in civil trials. In this Review, we integrate research on objective and subjective numeracy, focusing on cognitive and metacognitive factors that distort human perceptions and foment systematic biases in judgement and decision making. Paradoxically, an important implication of this research is that a literal focus on objective numbers and mechanical number crunching is misguided. Numbers can be a matter of life and death but a person who uses rote strategies (verbatim representations) cannot take advantage of the information contained in the numbers because 'rote' strategies are, by definition, processing without meaning. Verbatim representations (verbatim is only surface form, not meaning) treat numbers as data as opposed to information. We highlight a contrasting approach of gist extraction: organizing numbers meaningfully, interpreting them qualitatively and making meaningful inferences about them. Efforts to improve numerical cognition and its practical applications can benefit from emphasizing the qualitative meaning of numbers in context - the gist - building on the strengths of humans as intuitive mathematicians. Thus, we conclude by reviewing evidence that gist training facilitates transfer to new contexts and, because it is more durable, longer-lasting improvements in decision making. 
    more » « less
  2. BACKGROUND Charles Darwin’s  Descent of Man, and Selection in Relation to Sex  tackled the two main controversies arising from the Origin of Species:  the evolution of humans from animal ancestors and the evolution of sexual ornaments. Most of the book focuses on the latter, Darwin’s theory of sexual selection. Research since supports his conjecture that songs, perfumes, and intricate dances evolve because they help secure mating partners. Evidence is overwhelming for a primary role of both male and female mate choice in sexual selection—not only through premating courtship but also through intimate interactions during and long after mating. But what makes one prospective mate more enticing than another? Darwin, shaped by misogyny and sexual prudery, invoked a “taste for the beautiful” without speculating on the origin of the “taste.” How to explain when the “final marriage ceremony” is between two rams? What of oral sex in bats, cloacal rubbing in bonobos, or the sexual spectrum in humans, all observable in Darwin’s time? By explaining desire through the lens of those male traits that caught his eyes and those of his gender and culture, Darwin elided these data in his theory of sexual evolution. Work since Darwin has focused on how traits and preferences coevolve. Preferences can evolve even if attractive signals only predict offspring attractiveness, but most attention has gone to the intuitive but tenuous premise that mating with gorgeous partners yields vigorous offspring. By focusing on those aspects of mating preferences that coevolve with male traits, many of Darwin’s influential followers have followed the same narrow path. The sexual selection debate in the 1980s was framed as “good genes versus runaway”: Do preferences coevolve with traits because traits predict genetic benefits, or simply because they are beautiful? To the broader world this is still the conversation. ADVANCES Even as they evolve toward ever-more-beautiful signals and healthier offspring, mate-choice mechanisms and courter traits are locked in an arms race of coercion and resistance, persuasion and skepticism. Traits favored by sexual selection often do so at the expense of chooser fitness, creating sexual conflict. Choosers then evolve preferences in response to the costs imposed by courters. Often, though, the current traits of courters tell us little about how preferences arise. Sensory systems are often tuned to nonsexual cues like food, favoring mating signals resembling those cues. And preferences can emerge simply from selection on choosing conspecifics. Sexual selection can therefore arise from chooser biases that have nothing to do with ornaments. Choice may occur before mating, as Darwin emphasized, but individuals mate multiple times and bias fertilization and offspring care toward favored partners. Mate choice can thus occur in myriad ways after mating, through behavioral, morphological, and physiological mechanisms. Like other biological traits, mating preferences vary among individuals and species along multiple dimensions. Some of this is likely adaptive, as different individuals will have different optimal mates. Indeed, mate choice may be more about choosing compatible partners than picking the “best” mate in the absolute sense. Compatibility-based choice can drive or reinforce genetic divergence and lead to speciation. The mechanisms underlying the “taste for the beautiful” determine whether mate choice accelerates or inhibits reproductive isolation. If preferences are learned from parents, or covary with ecological differences like the sensory environment, then choice can promote genetic divergence. If everyone shares preferences for attractive ornaments, then choice promotes gene flow between lineages. OUTLOOK Two major trends continue to shift the emphasis away from male “beauty” and toward how and why individuals make sexual choices. The first integrates neuroscience, genomics, and physiology. We need not limit ourselves to the feathers and dances that dazzled Darwin, which gives us a vastly richer picture of mate choice. The second is that despite persistent structural inequities in academia, a broader range of people study a broader range of questions. This new focus confirms Darwin’s insight that mate choice makes a primary contribution to sexual selection, but suggests that sexual selection is often tangential to mate choice. This conclusion challenges a persistent belief with sinister roots, whereby mate choice is all about male ornaments. Under this view, females evolve to prefer handsome males who provide healthy offspring, or alternatively, to express flighty whims for arbitrary traits. But mate-choice mechanisms also evolve for a host of other reasons Understanding mate choice mechanisms is key to understanding how sexual decisions underlie speciation and adaptation to environmental change. New theory and technology allow us to explicitly connect decision-making mechanisms with their evolutionary consequences. A century and a half after Darwin, we can shift our focus to females and males as choosers, rather than the gaudy by-products of mate choice. Mate choice mechanisms across domains of life. Sensory periphery for stimulus detection (yellow), brain for perceptual integration and evaluation (orange), and reproductive structures for postmating choice among pollen or sperm (teal). ILLUSTRATION: KELLIE HOLOSKI/ SCIENCE 
    more » « less
  3. Abstract. In the geosciences, recent attention has been paid to the influence of uncertainty on expert decision-making. When making decisions under conditions of uncertainty, people tend to employ heuristics (rules of thumb) based on experience, relying on their prior knowledge and beliefs to intuitively guide choice. Over 50 years of decision-making research in cognitive psychology demonstrates that heuristics can lead to less-than-optimal decisions, collectively referred to as biases. For example, the availability bias occurs when people make judgments based on what is most dominant or accessible in memory; geoscientists who have spent the past several months studying strike-slip faults will have this terrain most readily available in their mind when interpreting new seismic data. Given the important social and commercial implications of many geoscience decisions, there is a need to develop effective interventions for removing or mitigating decision bias. In this paper, we outline the key insights from decision-making research about how to reduce bias and review the literature on debiasing strategies. First, we define an optimal decision, since improving decision-making requires having a standard to work towards. Next, we discuss the cognitive mechanisms underlying decision biases and describe three biases that have been shown to influence geoscientists' decision-making (availability bias, framing bias, anchoring bias). Finally, we review existing debiasing strategies that have applicability in the geosciences, with special attention given to strategies that make use of information technology and artificial intelligence (AI). We present two case studies illustrating different applications of intelligent systems for the debiasing of geoscientific decision-making, wherein debiased decision-making is an emergent property of the coordinated and integrated processing of human–AI collaborative teams. 
    more » « less
  4. his work-in-progress paper expands on a collaboration between engineering education researchers and machine learning researchers to automate the analysis of written responses to conceptually challenging questions in statics and dynamics courses (Authors, 2022). Using the Concept Warehouse (Koretsky et al., 2014), written justifications of ConcepTests (CTs) were gathered from statics and dynamics courses in a diverse set of two- and four-year institutions. Written justifications for CTs have been used to support active learning pedagogies which makes them important to investigate how students put together their problem-solving narratives of understanding. However, despite the large benefit that analysis of student written responses may provide to instructors and researchers, manual review of responses is cumbersome, limits analysis, and can be prone to human bias. In efforts to improve the analysis of student written responses, machine learning has been used in various educational contexts to analyze short and long texts (Burstein et al., 2020; Burstein et al., 2021). Natural Language Processing (NLP) uses transformer-based machine learning models (Brown et al., 2020; Raffel et al., 2019) which can be used through fine-tuning or in-context learning methods. NLP can be used to train algorithms that can automate the coding of written responses. Only a few studies for educational applications have leveraged transformer-based machine learning models further prompting an investigation into its use in STEM education. However, work in NLP has been criticized for heightening the possibility to perpetuate and even amplify harmful stereotypes and implicit biases (Chang et al., 2019; Mayfield et al., 2019). In this study, we detail the aim to use NLP for linguistic justice. Using methods like text summary, topic modeling, and text classification, we identify key aspects of student narratives of understanding in written responses to mechanics and statics CTs. Through this process, we seek to use machine learning to identify different ways students talk about a problem and their understanding at any point in their narrative formation process. Thus, we hope to help reduce human bias in the classroom and through technology by giving instructors and researchers a diverse set of narratives that include insight into their students’ histories, identities, and understanding. These can then be used towards connecting technological knowledge to students’ everyday lives. 
    more » « less
  5. Abstract Background

    People with mental illnesses are disproportionately entangled in the criminal legal system. Historically, this involvement has resulted from minor offending, often accompanied by misdemeanor charges. In recent years, policymakers have worked to reduce the footprint of the criminal legal system. This paper seeks to better understand how misdemeanor systems intervene in the lives of people with mental illnesses.

    Methods

    System mapping exercises were conducted with misdemeanor system stakeholders from the jurisdictions of Atlanta, Chicago, Manhattan, and Philadelphia. Narrative detail on decision-making and case processing, both generally and in relation to specific types of behavior, including trespassing, retail theft/shoplifting, and simple assault, were coded and analyzed for thematic patterns. Based on the qualitative analysis, this paper offers a conceptual diagram of contexts shaping misdemeanor system interventions among people with mental illnesses.

    Results

    All four sites have been engaged in efforts to reduce the use of misdemeanor charges both generally and in relation to people with mental illnesses. Decision-makers across all sites experience contexts that shape how, when, and where they intervene, which are: (1) law and policy environments; (2) location of the behavior; (3) expectations of stakeholders; (4) knowledge of mental illnesses; and (5) access to community resources. Law and policy environments expand or constrain opportunities for diversion. The location of offending is relevant to who has a stake in the behavior, and what demands they have. Clinical, experiential, and system-level knowledge of mental illnesses inform a chain of decisions about what to do. The capacity to address mental health needs is contingent on access to social services, including housing.

    Conclusion

    People making decisions along the criminal legal continuum are critical to illuminating the dynamic, inter-related contexts that facilitate and frustrate attempts to address defendants’ mental health needs while balancing considerations of public safety. Multi-sector, scenario-based or case study exercises could help identify concrete ways of improving each of the contexts that surround whole-of-system decisions.

     
    more » « less