BACKGROUND Charles Darwin’s Descent of Man, and Selection in Relation to Sex tackled the two main controversies arising from the Origin of Species: the evolution of humans from animal ancestors and the evolution of sexual ornaments. Most of the book focuses on the latter, Darwin’s theory of sexual selection. Research since supports his conjecture that songs, perfumes, and intricate dances evolve because they help secure mating partners. Evidence is overwhelming for a primary role of both male and female mate choice in sexual selection—not only through premating courtship but also through intimate interactions during and long after mating. But what makes one prospective mate more enticing than another? Darwin, shaped by misogyny and sexual prudery, invoked a “taste for the beautiful” without speculating on the origin of the “taste.” How to explain when the “final marriage ceremony” is between two rams? What of oral sex in bats, cloacal rubbing in bonobos, or the sexual spectrum in humans, all observable in Darwin’s time? By explaining desire through the lens of those male traits that caught his eyes and those of his gender and culture, Darwin elided these data in his theory of sexual evolution. Work since Darwin has focused on howmore »
Leveraging Math Cognition to Combat Health Innumeracy
Rational numbers (i.e., fractions, percentages, decimals, and whole-number frequencies) are notoriously difficult mathematical constructs. Yet correctly interpreting rational numbers is imperative for understanding health statistics, such as gauging the likelihood of side effects from a medication. Several pernicious biases affect health decision-making involving rational numbers. In our novel developmental framework, the natural-number bias—a tendency to misapply knowledge about natural numbers to all numbers—is the mechanism underlying other biases that shape health decision-making. Natural-number bias occurs when people automatically process natural-number magnitudes and disregard ratio magnitudes. Math-cognition researchers have identified individual differences and environmental factors underlying natural-number bias and devised ways to teach people how to avoid these biases. Although effective interventions from other areas of research can help adults evaluate numerical health information, they circumvent the core issue: people’s penchant to automatically process natural-number magnitudes and disregard ratio magnitudes. We describe the origins of natural-number bias and how researchers may harness the bias to improve rational-number understanding and ameliorate innumeracy in real-world contexts, including health. We recommend modifications to formal math education to help children learn the connections among natural and rational numbers. We also call on researchers to consider individual differences people bring to health decision-making contexts and how more »
- Award ID(s):
- 2103495
- Publication Date:
- NSF-PAR ID:
- 10388085
- Journal Name:
- Perspectives on Psychological Science
- Page Range or eLocation-ID:
- 174569162210832
- ISSN:
- 1745-6916
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. In the geosciences, recent attention has been paid to the influence of uncertainty on expert decision-making. When making decisions under conditions of uncertainty, people tend to employ heuristics (rules of thumb) based on experience, relying on their prior knowledge and beliefs to intuitively guide choice. Over 50 years of decision-making research in cognitive psychology demonstrates that heuristics can lead to less-than-optimal decisions, collectively referred to as biases. For example, the availability bias occurs when people make judgments based on what is most dominant or accessible in memory; geoscientists who have spent the past several months studying strike-slip faults will have this terrain most readily available in their mind when interpreting new seismic data. Given the important social and commercial implications of many geoscience decisions, there is a need to develop effective interventions for removing or mitigating decision bias. In this paper, we outline the key insights from decision-making research about how to reduce bias and review the literature on debiasing strategies. First, we define an optimal decision, since improving decision-making requires having a standard to work towards. Next, we discuss the cognitive mechanisms underlying decision biases and describe three biases that have been shown to influence geoscientists' decision-making (availability bias,more »
-
The visualization community has seen a rise in the adoption of user studies. Empirical user studies systematically test the assumptions that we make about how visualizations can help or hinder viewers’ performance of tasks. Although the increase in user studies is encouraging, it is vital that research on human reasoning with visualizations be grounded in an understanding of how the mind functions. Previously, there were no sufficient models that illustrate the process of decision-making with visualizations. However, Padilla et al. [41] recently proposed an integrative model for decision-making with visualizations, which expands on modern theories of visualization cognition and decision-making. In this paper, we provide insights into how cognitive models can accelerate innovation, improve validity, and facilitate replication efforts, which have yet to be thoroughly discussed in the visualization community. To do this, we offer a compact overview of the cognitive science of decision-making with visualizations for the visualization community, using the Padilla et al. [41] cognitive model as a guiding framework. By detailing examples of visualization research that illustrate each component of the model, this paper offers novel insights into how visualization researchers can utilize a cognitive framework to guide their user studies. We provide practical examples of eachmore »
-
Background Shared decision making requires evidence to be conveyed to the patient in a way they can easily understand and compare. Patient decision aids facilitate this process. This article reviews the current evidence for how to present numerical probabilities within patient decision aids. Methods Following the 2013 review method, we assembled a group of 9 international experts on risk communication across Australia, Germany, the Netherlands, the United Kingdom, and the United States. We expanded the topics covered in the first review to reflect emerging areas of research. Groups of 2 to 3 authors reviewed the relevant literature based on their expertise and wrote each section before review by the full authorship team. Results Of 10 topics identified, we present 5 fundamental issues in this article. Although some topics resulted in clear guidance (presenting the chance an event will occur, addressing numerical skills), other topics (context/evaluative labels, conveying uncertainty, risk over time) continue to have evolving knowledge bases. We recommend presenting numbers over a set time period with a clear denominator, using consistent formats between outcomes and interventions to enable unbiased comparisons, and interpreting the numbers for the reader to meet the needs of varying numeracy. Discussion Understanding how different numericalmore »
-
Working memory, the brain’s ability to temporarily store and recall information, is a critical part of decision making – but it has its limits. The brain can only store so much information, for so long. Since decisions are not often acted on immediately, information held in working memory ‘degrades’ over time. However, it is unknown whether or not this degradation of information over time affects the accuracy of later decisions. The tactics that people use, knowingly or otherwise, to store information in working memory also remain unclear. Do people store pieces of information such as numbers, objects and particular details? Or do they tend to compute that information, make some preliminary judgement and recall their verdict later? Does the strategy chosen impact people’s decision-making? To investigate, Schapiro et al. devised a series of experiments to test whether the limitations of working memory, and how people store information, affect the accuracy of decisions they make. First, participants were shown an array of colored discs on a screen. Then, either immediately after seeing the disks or a few seconds later, the participants were asked to recall the position of one of the disks they had seen, or the average position of allmore »