skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Anomalous stability of non-van der Waals bonded B4C nanosheets through surface reconstruction
Boron carbide (B4C) has been well studied both theoretically and experimentally in its bulk form due to its exceptional hardness and use as a high-temperature thermoelectric. However, the properties of its two-dimensional nanosheets are not well established. In this paper, using van der Waals-corrected density-functional theory simulations, we show that bulk B4C can be cleaved along different directions to form B4C nanosheets with low formation energies. We find that there is minimal dependence of formation energies on cleavage planes and surface terminations, even though the bulk is not van der Waals layered. This anomalous stability of B4C nanosheets is found to be a result of surface reconstructions that are unique to B-rich systems. While the density of states of the bulk B4C indicate that it is a semiconductor, the B4C nanosheets are found to be predominantly metallic. We attribute this metallic behavior to a redistribution of charges on the surface bonds of the films. The Seebeck coefficients of the B4C films remain comparable to those of the bulk and are nearly constant as a function of temperature. Our results provide guidance for experimental synthesis efforts and future application of B4C nanosheets in nanoelectronic and thermoelectric applications.  more » « less
Award ID(s):
1906030
PAR ID:
10388090
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
132
Issue:
24
ISSN:
0021-8979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Scanning tunneling microscopy shows that copper deposited at room temperature onto a freshly exfoliated MoS2 surface forms Cu(111) clusters with periodic preferred heights of 5, 8, and 11 atomic layers. These height intervals correlate with Fermi nesting regions along the necks of the bulk Cu Fermi surface, indicating a connection between physical and electronic structures. Density functional theory calculations of freestanding Cu(111) films support this as well, predicting a lower density of states at the Fermi level for these preferred heights. This is consistent with other noble metals deposited on MoS2 that exhibit electronic growth, in which the metal films self-assemble as nanostructures minimizing quantum electronic energies. Here, we have discovered that it is critical for the metal deposition to begin on a clean MoS2 surface. If copper is deposited onto an already Cu coated surface, even if the original film displays electronic growth, the resulting Cu film lacks quantization. Instead, the preferred heights of the Cu clusters simply increase linearly with the amount of Cu deposited upon the surface. We believe this is due to different bonding conditions during the initial stages of growth. Newly deposited copper would bond strongly to the already present copper clusters, rather than the weak bonding, which exists to the van der Waals terminated surface of MoS2. The stronger bonding with previously deposited clusters hinders additional Cu atoms from reaching their lowest quantum energy state. The interface characteristics of the van der Waals surface enable surface engineering of self-assembled structures to achieve different applications. 
    more » « less
  2. null (Ed.)
    Investigating the adsorption of organic pollutants onto boron nitride nanosheets is crucial for designing novel boron nitride adsorbents so as to remove pollutants from the environment. In this study, we performed density functional theory (DFT) computations to investigate the adsorption of 28 aromatic compounds onto boron nitride nanosheets, and developed four quantitative structure–activity relationship (QSAR) models for predicting the logarithm of the adsorption equilibrium constant (log  K ) values of organic pollutants adsorbed onto boron nitride nanosheets in both gaseous and aqueous environments. The DFT-predicted adsorption energies showed that boron nitride nanosheets exhibit stronger adsorption capability than graphene. Our QSAR analyses revealed that van der Waals interactions play dominant roles in gaseous adsorption, while van der Waals and hydrophobic interactions are the main driving forces in aqueous adsorption. This work demonstrates that in silico QSAR models can serve as efficient tools for high-throughput prediction of log  K values for organic pollutants adsorbed onto boron nitride nanomaterials. 
    more » « less
  3. Liquid phase exfoliation (LPE) is a method that can be used to produce bulk quantities of two-dimensional (2D) nanosheets from layered van der Waals (vdW) materials. In recent years, LPE has been applied to several non-vdW materials with anisotropic bonding to produce nanosheets and platelets, but it has not been demonstrated for materials with strong isotropic bonding. In this paper, we demonstrate the exfoliation of boron carbide (B 4 C), the third hardest known material, into ultrathin nanosheets. B 4 C has a structure consisting of strongly bonded boron icosahedra and carbon chains, but does not have anisotropic cleavage energies to suggest that it can be readily cleaved into nanosheets. B 4 C has been widely studied for its very high melting point, high mechanical strength, and chemical stability, as well as its zero- and one-dimensional nanostructured forms. Herein, ultrathin nanosheets are successfully prepared by sonication of B 4 C powder in organic solvents and are characterized by microscopy and spectroscopy. Density functional theory (DFT) simulations reveal that B 4 C can be cleaved along several different crystallographic planes with similar energetic favourability, facilititated by an unexpected mechanism of breaking boron icosahedra and forming new boron-rich cage structures at the surface. Atomic force microscopy (AFM) shows that the nanosheets produced by LPE are as thin as 5 nm, with an average thickness of 31.4 nm and average area of 16 000 nm 2 . Raman spectroscopy shows that many of the nanosheets exhibit additional carbon-rich peaks that change with laser irradiation, which are attributed to atomic rearrangements and amorphization at the nanosheet surfaces, consistent with the diverse cleavage planes. High-resolution transmission electron microscopy (HRTEM) demonstrates that many different cleavage planes exist among the exfoliated nanosheets, in agreement with DFT simulations. This work elucidates the exfoliation mechanism of 2D B 4 C and suggests that LPE can be applied to generate nanosheets from a variety of non-layered and non-vdW materials. 
    more » « less
  4. Abstract This work is a systematic experimental and theoretical study of the in‐plane dielectric functions of 2D gallium and indium films consisting of two or three atomic metal layers confined between silicon carbide and graphene with a corresponding bonding gradient from covalent to metallic to van der Waals type.k‐space resolved free electron and bound electron contributions to the optical response are identified, with the latter pointing towards the existence of thickness dependent quantum confinement phenomena. The resonance energies in the dielectric functions and the observed epsilon near‐zero behavior in the near infrared to visible spectral range, are dependent on the number of atomic metal layers and properties of the metal involved. A model‐based spectroscopic ellipsometry approach is used to estimate the number of atomic metal layers, providing a convenient route over expensive invasive characterization techniques. A strong thickness and metal choice dependence of the light–matter interaction makes these half van der Waals 2D polar metals attractive for quantum engineered metal films, tunable (quantum‐)plasmonics and nano‐photonics. 
    more » « less
  5. Ferroelectricity in van der Waals (vdW) layered material has attracted a great deal of interest recently. CuInP2S6 (CIPS), the only vdW layered material whose ferroelectricity in the bulk was demonstrated by direct polarization measurements, was shown to remain ferroelectric down to a thickness of a few nanometers. However, its ferroelectric properties have just started to be explored in the context of potential device applications. We report here the preparation and measurements of metal-ferroelectric semiconductor-metal heterostructures using nanosheets of CIPS obtained by mechanical exfoliation. Four bias voltage and polarization dependent resistive states were observed in the current–voltage characteristics, which we attribute to the formation of ferroelectric Schottky diode, along with switching behavior. 
    more » « less