skip to main content

This content will become publicly available on December 15, 2023

Title: Residents manage dynamic plant communities: Change over time in urban vegetation
Introduction Integrated social and ecological processes shape urban plant communities, but the temporal dynamics and potential for change in these managed communities have rarely been explored. In residential yards, which cover about 40% of urban land area, individuals make decisions that control vegetation outcomes. These decisions may lead to relatively static plant composition and structure, as residents seek to expend little effort to maintain stable landscapes. Alternatively, residents may actively modify plant communities to meet their preferences or address perceived problems, or they may passively allow them to change. In this research, we ask, how and to what extent does residential yard vegetation change over time? Methods We conducted co-located ecological surveys of yards (in 2008, 2018, and 2019) and social surveys of residents (in 2018) in four diverse neighborhoods of Phoenix, Arizona. Results 94% of residents had made some changes to their front or back yards since moving in. On average, about 60% of woody vegetation per yard changed between 2008 and 2018, though the number of species present did not differ significantly. In comparison, about 30% of woody vegetation changed in native Sonoran Desert reference areas over 10 years. In yards, about 15% of woody vegetation changed on average more » in a single year, with up to 90% change in some yards. Greater turnover was observed for homes that were sold, indicating a “pulse” of management. Additionally, we observed greater vegetation turnover in the two older, lawn-dominated neighborhoods surveyed despite differences in neighborhood socioeconomic factors. Discussion These results indicate that residential plant communities are dynamic over time. Neighborhood age and other characteristics may be important drivers of change, while socioeconomic status neither promotes nor inhibits change at the neighborhood scale. Our findings highlight an opportunity for management interventions, wherein residents may be open to making conservation-friendly changes if they are already altering the composition of their yards. « less
Authors:
; ; ;
Award ID(s):
1638725
Publication Date:
NSF-PAR ID:
10388392
Journal Name:
Frontiers in Ecology and Evolution
Volume:
10
ISSN:
2296-701X
Sponsoring Org:
National Science Foundation
More Like this
  1. Urbanization has a homogenizing effect on biodiversity and leads to communities with fewer native species and lower conservation value. However, few studies have explored whether or how land management by urban residents can ameliorate the deleterious effects of this homogenization on species composition. We tested the effects of local (land management) and neighborhood-scale (impervious surface and tree canopy cover) features on breeding bird diversity in six US metropolitan areas that differ in regional species pools and climate. We used a Bayesian multiregion community model to assess differences in species richness, functional guild richness, community turnover, population vulnerability, and public interest in each bird community in six land management types: two natural area park types (separate and adjacent to residential areas), two yard types with conservation features (wildlife-certified and water conservation) and two lawn-dominated yard types (high- and low-fertilizer application), and surrounding neighborhood-scale features. Species richness was higher in yards compared with parks; however, parks supported communities with high conservation scores while yards supported species of high public interest. Bird communities in all land management types were composed of primarily native species. Within yard types, species richness was strongly and positively associated with neighborhood-scale tree canopy cover and negatively associated withmore »impervious surface. At a continental scale, community turnover between cities was lowest in yards and highest in parks. Within cities, however, turnover was lowest in high-fertilizer yards and highest in wildlife-certified yards and parks. Our results demonstrate that, across regions, preserving natural areas, minimizing impervious surfaces and increasing tree canopy are essential strategies to conserve regionally important species. However, yards, especially those managed for wildlife support diverse, heterogeneous bird communities with high public interest and potential to support species of conservation concern. Management approaches that include the preservation of protected parks, encourage wildlife-friendly yards and acknowledge how public interest in local birds can advance successful conservation in American residential landscapes.« less
  2. Abstract

    Urbanization has a homogenizing effect on biodiversity and leads to communities with fewer native species and lower conservation value. However, few studies have explored whether or how land management by urban residents can ameliorate the deleterious effects of this homogenization on species composition. We tested the effects of local (land management) and neighborhood‐scale (impervious surface and tree canopy cover) features on breeding bird diversity in six US metropolitan areas that differ in regional species pools and climate. We used a Bayesian multiregion community model to assess differences in species richness, functional guild richness, community turnover, population vulnerability, and public interest in each bird community in six land management types: two natural area park types (separate and adjacent to residential areas), two yard types with conservation features (wildlife‐certified and water conservation) and two lawn‐dominated yard types (high‐ and low‐fertilizer application), and surrounding neighborhood‐scale features. Species richness was higher in yards compared with parks; however, parks supported communities with high conservation scores while yards supported species of high public interest. Bird communities in all land management types were composed of primarily native species. Within yard types, species richness was strongly and positively associated with neighborhood‐scale tree canopy cover and negatively associatedmore »with impervious surface. At a continental scale, community turnover between cities was lowest in yards and highest in parks. Within cities, however, turnover was lowest in high‐fertilizer yards and highest in wildlife‐certified yards and parks. Our results demonstrate that, across regions, preserving natural areas, minimizing impervious surfaces and increasing tree canopy are essential strategies to conserve regionally important species. However, yards, especially those managed for wildlife support diverse, heterogeneous bird communities with high public interest and potential to support species of conservation concern. Management approaches that include the preservation of protected parks, encourage wildlife‐friendly yards and acknowledge how public interest in local birds can advance successful conservation in American residential landscapes.

    « less
  3. Abstract Questions

    Urban ecosystems present an opportunity to study ecological communities in the context of unprecedented environmental change. In the face of urban land conversion, ecologists observe new patterns of species composition, dominance, behaviour and dispersal. We propose a hypothetical socioeconomic template that describes a gradient in human investment in community composition to aid in organizing the human role in shaping urban biodiversity. We asked: (1) what is the relative magnitude of taxonomic and functional turnover of urban woody plant communities across different land‐use types; and (2) do land uses exhibiting higher intensity of human management of biodiversity support higher turnover over those with less human influence?

    Location

    Baltimore,MD,USA(39°17′ N, 76°38′ W).

    Methods

    We examined patterns in woody plant biodiversity across 209 plots of different urban land uses. Six land‐use types were arranged along a gradient in the intensity through which humans are hypothesized to manage species composition at the plot scale. We calculated local, or α‐diversity, and compositional turnover, or β‐diversity, of taxonomic and functional diversity across plots within each land‐use type. We compared the magnitude of these biodiversity measures between land uses to test our conceptual template for how the intensity of human management can predict urban woody plant biodiversity.

    Results

    Wemore »observed high taxonomic turnover in residential and commercial plots compared with vacant or open space land‐use areas. This was associated with a weaker, but similar, pattern in functional diversity. This was associated with low total abundance in residential and commercial plots. Furthermore, the number of unique species was extremely high in the same land‐use types.

    Conclusions

    Our observations help explain why turnover can be high in heavily managed plots relative to vacant land. In patches without heavy human management, we found low levels of turnover. This highlights the importance of assessing diversity both locally and at the level of turnover between patches. Management and policy can benefit from the perspective embodied in the conceptual approach tested here.

    « less
  4. null (Ed.)
    Despite the social and ecological importance of residential spaces across the country, scant research examines urban yard management policies in the U.S. Governance scholarship points to the implementation challenges of navigating policy language. Our research provides an exploration of yard ordinance language, with implications for communities across the U.S. Specifically, we sought to determine whether—and in what instances—vegetation- and groundcover-related yard ordinances in the U.S. are ambiguous or clear. Our findings suggest that ordinances are often ambiguous when referring to the state or quality of the constituent parts that make up the residential yard (e.g., “neat” or “orderly”). Yet they are clear when providing guidance about what plant species are or are not allowed, or when articulating specific requirements regarding the size or dimensions of impervious surfaces and plants. We discuss the policy implications of these findings, especially in the context of how such policies may invite the subjective judgment by enforcers, leaving open the potential for discriminatory enforcement, especially with regard to marginalized communities where different cultural values and esthetics may be expressed in yards.
  5. Societal Impact Statement

    People plant, remove, and manage urban vegetation in cities for varying purposes and to varying extents. The direct manipulation of plants affects the benefits people receive from plants. In synthesizing several studies of urban biodiversity in Los Angeles, we find that cultivated plants differ from those in remnant natural areas. This highlights the importance of studying cultivated plants in cities, which is crucial for the design and planning of sustainable cities. Residents have created a new urban biome in Los Angeles, and this has consequences for associated organisms, ultimately resulting in a responsibility for society to determine what type of biome we wish to create.

    Summary

    Urbanization is a large driver of biodiversity globally. Within cities, urban trees, gardens, and residential yards contribute extensively to plant biodiversity, although the consequences and mechanisms of plant cultivation for biodiversity are uncertain.

    We used Los Angeles, California, USA as a case study for investigating plant diversity in cultivated areas. We synthesized datasets quantifying the diversity of urban trees, residential yards, and community gardens in Los Angeles, the availability of plants from nurseries, and residents’ attitudes about plant attributes.

    Cultivated plant diversity was drastically different from remnant natural areas; compared to remnant naturalmore »areas, cultivated areas contained more exotic species, more than double the number of plant species, and turnover in plant functional trait distributions. In cultivated areas, most plants were intentionally planted and dominated by exotic species planted for ornamental purposes. Most tree species sampled in Los Angeles were available for sale in local nurseries. Residents’ preferences for specific plant traits were correlated with the trait composition of the plant community, suggesting cultivated plant communities at least partially reflect resident preferences.

    Our findings demonstrate the importance of cultivated species in a diverse megacity that are driven in part through commercial distribution. The cultivation of plants in Los Angeles greatly increases regional plant biodiversity through changes in species composition and functional trait distributions. The pervasive presence of cultivated species likely has many consequences for residents and the ecosystem services they receive compared with unmanaged or remnant urban areas.

    « less