skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: Mass Transfer at the Ocean–Atmosphere Interface: The Role of Wave Breaking, Droplets, and Bubbles
Breaking waves modulate the transfer of energy, momentum, and mass between the ocean and atmosphere, controlling processes critical to the climate system, from gas exchange of carbon dioxide and oxygen to the generation of sea spray aerosols that can be transported in the atmosphere and serve as cloud condensation nuclei. The smallest components, i.e., drops and bubbles generated by breaking waves, play an outsize role. This fascinating problem is characterized by a wide range of length scales, from wind forcing the wave field at scales of [Formula: see text](1 km–0.1 m) to the dynamics of wave breaking at [Formula: see text](10–0.1 m); air bubble entrainment, dynamics, and dissolution in the water column at [Formula: see text](1 m–10 μm); and bubbles bursting at [Formula: see text](10 mm–1 μm), generating sea spray droplets at [Formula: see text](0.5 mm–0.5 μm) that are ejected into atmospheric turbulent boundary layers. I discuss recent progress to bridge these length scales, identifying the controlling processes and proposing a path toward mechanistic parameterizations of air–sea mass exchange that naturally accounts for sea state effects.  more » « less
Award ID(s):
1844932 1849762
PAR ID:
10388564
Author(s) / Creator(s):
Date Published:
Journal Name:
Annual Review of Fluid Mechanics
Volume:
54
Issue:
1
ISSN:
0066-4189
Page Range / eLocation ID:
191 to 224
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Air bubbles at the surface of water end their life in a particular way: when bursting, they may eject drops of liquid in the surrounding environment. Many uncertainties remain regarding collective effects of bubbles at the water–air interface, despite extensive efforts to describe the bursting mechanisms, motivated by their critical importance in mass transfers between the ocean and the atmosphere in the production of sea spray aerosols. We investigate the effect of surfactant on the collective dynamics and statistics of air bubbles evolving freely at the surface of water, through an experimental set-up controlling the bulk distribution of bubbles with nearly monodisperse millimetric air bubbles. We observe that for low contamination, bubble coalescence is inevitable and leads to a broad surface size distribution. For higher surfactant concentrations, coalescence at the surface is prevented and bubble lifetime is increased, leading to the formation of rafts with a surface size distribution identical to the bulk distribution. This shows that surface contamination has a first-order influence on the transfer function from bulk size distribution to surface size distribution, an intermediate step which needs to be considered when developing sea spray source function as droplet production by bubble bursting depends on the bubble size. We measure the bursting and merging rates of bubbles as a function of contamination through a complementary freely decaying raft experiment. We propose a cellular automaton model that includes the minimal ingredients to reproduce the experimental results in the statistically stationary configuration: production, coalescence and bursting after a finite lifetime. 
    more » « less
  2. Hantavirus outbreaks in the American Southwest are hypothesized to be driven by episodic seasonal events of high precipitation, promoting rapid increases in virus-reservoir rodent species that then move across the landscape from high quality montane forested habitats (refugia), eventually over-running human residences and increasing disease risk. In this study, the velocities of rodents and virus diffusion wave propagation and retraction were documented and quantified in the sky-islands of northern New Mexico and related to rodent-virus relationships in refugia versus nonrefugia habitats. Deer mouse (Peromyscus maniculatus) refugia populations exhibited higher Sin Nombre Virus (SNV) infection prevalence than nonrefugia populations. The velocity of propagating diffusion waves of Peromyscus from montane to lower grassland habitats was measured at [Formula: see text] m/day (SE), with wave retraction velocities of [Formula: see text] m/day. SNV infection diffusion wave propagation velocity within a deer mouse population averaged [Formula: see text] m/day, with a faster retraction wave velocity of [Formula: see text] m/day. A spatio-temporal analysis of human Hantavirus Pulmonary Syndrome (HPS) cases during the initial 1993 epidemic revealed a positive linear relationship between the time during the epidemic and the distance of human cases from the nearest deer mouse refugium, with a landscape diffusion wave velocity of [Formula: see text] m/day ([Formula: see text]). These consistent diffusion propagation wave velocity results support the traveling wave component of the HPS outbreak theory and can provide information on space–time constraints for future outbreak forecasts. 
    more » « less
  3. It is now well accepted that to better understand the coupling between the atmosphere and the ocean, and improve coupled ocean–atmosphere models, surface wave processes need to be taken into account. Here, properties of the directional distributions of the surface wave field across the equilibrium and saturation ranges are investigated from airborne lidar data collected during the ONR Southern California 2013 (SoCal2013) experiment, conducted off the coast of Southern California in November 2013. During the field effort, detailed characterization of the marine atmospheric boundary layer was performed from Research Platform (R/P) Floating Instrument Platform ( FLIP), moored at the center of the aircraft operational domain. The wind speed ranged from approximately 1–2 to up to 11 m s −1 , while the significant wave height varied from 0.8 to 2.5 m during the 10 days of data collection considered in the analysis. The directional wavenumber spectrum exhibits a clear, bimodal distribution that extends well beyond what was reported in previous studies, with the azimuthal separation between the lobes reaching ≈ π for the highest wavenumbers that could be resolved: approximately 10–12 rad m −1 . The results demonstrate that opposing wave components can be found in one storm system rather than requiring waves from opposing storms, with implications for ocean acoustics. With the broad wavenumber range of the directional spectra obtained from the lidar, the transition from the equilibrium to saturation ranges over a range of wind forcing conditions is found to occur for [Formula: see text] ≈ 1–2 × 10 −3 , where k n is the wavenumber at the upper limit of the equilibrium range, u * the friction velocity, and g the gravitational acceleration. The results are discussed in the context of Phillips’ model of the equilibrium range of wind-generated gravity waves. 
    more » « less
  4. An experimental study of the dynamics and droplet production in three mechanically generated plunging breaking waves is presented in this two-part paper. In the present paper (Part 2), in-line cinematic holography is used to measure the positions, diameters ($$d\geq 100\ \mathrm {\mu }{\rm m}$$), times and velocities of droplets generated by the three plunging breaking waves studied in Part 1 (Erininet al.,J. Fluid Mech., vol. 967, 2023, A35) as the droplets move up across a horizontal measurement plane located just above the wave crests. It is found that there are four major mechanisms for droplet production: closure of the indentation between the top surface of the plunging jet and the splash that it creates, the bursting of large bubbles that were entrapped under the plunging jet at impact, splashing and bubble bursting in the turbulent zone on the front face of the wave and the bursting of small bubbles that reach the water surface at the crest of the non-breaking wave following the breaker. The droplet diameter distributions for the entire droplet set for each breaker are fitted with power-law functions in separate small- and large-diameter regions. The droplet diameter where these power-law functions cross increases monotonically from 820 to 1480$$\mathrm {\mu }{\rm m}$$from the weak to the strong breaker, respectively. The droplet diameter and velocity characteristics and the number of the droplets generated by the four mechanisms are found to vary significantly and the processes that create these differences are discussed. 
    more » « less
  5. The effect of nozzle surface features on the overall atomization behavior of a liquid jet is analyzed in the present computational work by adopting three representative geometries, namely a single X-ray tomography scan of the Engine Combustion Network’s Spray A nozzle (Unprocessed), a spline reconstruction of multiple scans (Educated), and a purely external flow configuration. The latter configuration is often used in fundamental jet atomization studies. Numerically, the two-phase flow is solved based on algebraic volume-of-fluid methodology utilizing the OpenFoam solver, interFoam. Quantitative characterization of the surface features concerning the first two geometries reveals that while both of them have similar levels of cylindrical asymmetries, the nozzle configuration pertaining to the Unprocessed geometry has much larger surface features along the streamwise direction than the Educated geometry. This produces for the Unprocessed configuration a much larger degree of non-axial velocity components in the flow exiting the orifice and also a more pronounced disturbance of the liquid surface in the first few diameters downstream of the nozzle orifice. Furthermore, this heightened level of surface destabilization generates a much shorter intact liquid core length, that is, it produces faster primary atomization. The surprising aspect of this finding is that the differences between the Unprocessed and Educated geometries are of [Formula: see text](1) μm, and they are able to produce [Formula: see text](1) mm effects in the intact liquid core length. In spite of more pronounced atomization for the Unprocessed geometry, the magnitude of the turbulent liquid kinetic energy is roughly the same as the Educated geometry. This highlights the important role of mean field quantities, in particular, non-axial velocity components, in precipitating primary atomization. At the other end of the spectrum, the external-only configuration has the mildest level of surface disturbances in the near field resulting in the longest intact liquid core length. 
    more » « less