skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Low‐weight fractions of graphene and hydroxyapatite enhance mechanics in photocured methacrylate adhesives
Abstract In many applications, it is desirable for photocured adhesives to have high‐mechanical strength in the cured state, but relatively low viscosity when liquid. This was achieved by adding less than 0.5 wt% hydroxyapatite and graphene to methyl methacrylate with diurethane dimethacrylate (UDMA‐MMA). Nanoindentation shows hardness increasing by 30–40% and indentation modulus by >30% compared to UDMA‐MMA on its own. Rheometry shows only a small increase in uncured viscosity for the liquid state. The additives affect the optical properties, mobility of free radicals, photocuring, and degree of conversion, the effects of which are seen in Fourier transform infrared and micro‐Raman spectra. Thermographic images taken during curing show that the additives impact the photocuring process. In addition, changes in intermolecular bonding are seen in the vibrational spectra when the additives are present. The enhanced mechanical properties are attributed to the observed changes in photocuring and bonding.  more » « less
Award ID(s):
1659099
PAR ID:
10388641
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Applied Polymer Science
Volume:
138
Issue:
20
ISSN:
0021-8995
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The demand for effective de-bondable adhesive technology enabling substrate separation under small loads has grown in recent years. Thermally Expandable Particles (TEP) can be embedded in structural adhesives to promote mechanical separation of the adherends. However, the activation of TEP additives in joints with non-metallic adherends is challenging and can result in substrate thermal damage and poor de-bonding performance, due to the low thermal conductivity and dielectric loss factor typical of plastics and polymer-matrix composites. In this study, the effect of bondline stainless steel inserts on fully composite (Carbon Fiber Reinforced Polymer, or CFRP) bonded Single Lap Joints (SLJ) mechanical and de-bonding performance is evaluated. A centrifugal mixer is used to disperse the TEP in the adhesive. TEP additives are activated using induction heating of the bondline insert, which also helps control crack initiation and propagation. SLJ de-bonding tests are run under a constant 20 lb (89 N) load, and substrate temperature is recorded with thermocouples and an infrared thermometer. Joint strength is evaluated with quasi-static lap shear tests on a servo-hydraulic tensile test apparatus. Preliminary de-bonding testing is performed on a broad initial set of 316 stainless steel insert designs. Out of those, the four best-performing insert geometries are chosen for the complete study. Two TEP enrichment levels (10% and 20% wt.) are investigated. The mechanical and de-bonding performance of SLJs with steel inserts is compared to TEP-only baseline fully-composite and multi-material (AA 6061 Aluminum Alloy + CFRP) joints. The results show that bondline inserts enable fast de-bonding of fully-composite SLJs. Insert geometry and thickness affect joint de-bonding time and reliability, and can be optimized to allow for a partial recovery of lap shear strength. 100% de-bonding reliability is achieved with “block”-type inserts, with de-bonding performance similar to TEP-enriched metallic joints. Visual inspection of the fracture surfaces shows the relationship between TEP activation and crack propagation path. Discussion and conclusions are provided. 
    more » « less
  2. Possessing a unique combination of properties that are traditionally contradictory in other natural or synthetical materials, Ga-based liquid metals (LMs) exhibit low mechanical stiffness and flowability like a liquid, with good electrical and thermal conductivity like metal, as well as good biocompatibility and room-temperature phase transformation. These remarkable properties have paved the way for the development of novel reconfigurable or stretchable electronics and devices. Despite these outstanding properties, the easy oxidation, high surface tension, and low rheological viscosity of LMs have presented formidable challenges in high-resolution patterning. To address this challenge, various surface modifications or additives have been employed to tailor the oxidation state, viscosity, and patterning capability of LMs. One effective approach for LM patterning is breaking down LMs into microparticles known as liquid metal particles (LMPs). This facilitates LM patterning using conventional techniques such as stencil, screening, or inkjet printing. Judiciously formulated photo-curable LMP inks or the introduction of an adhesive seed layer combined with a modified lift-off process further provide the micrometer-level LM patterns. Incorporating porous and adhesive substrates in LM-based electronics allows direct interfacing with the skin for robust and long-term monitoring of physiological signals. Combined with self-healing polymers in the form of substrates or composites, LM-based electronics can provide mechanical-robust devices to heal after damage for working in harsh environments. This review provides the latest advances in LM-based composites, fabrication methods, and their novel and unique applications in stretchable or reconfigurable sensors and resulting integrated systems. It is believed that the advancements in LM-based material preparation and high-resolution techniques have opened up opportunities for customized designs of LM-based stretchable sensors, as well as multifunctional, reconfigurable, highly integrated, and even standalone systems. 
    more » « less
  3. Abstract The ability to print soft materials into predefined architectures with programmable nanostructures and mechanical properties is a necessary requirement for creating synthetic biomaterials that mimic living tissues. However, the low viscosity of common materials and lack of required mechanical properties in the final product present an obstacle to the use of traditional additive manufacturing approaches. Here, a new liquid‐in‐liquid 3D printing approach is used to successfully fabricate constructs with internal nanostructures using in situ self‐assembly during the extrusion of an aqueous solution containing surfactant and photocurable polymer into a stabilizing polar oil bath. Subsequent photopolymerization preserves the nanostructures created due to surfactant self‐assembly at the immiscible liquid–liquid interface, which is confirmed by small‐angle X‐ray scattering. Mechanical properties of the photopolymerized prints are shown to be tunable based on constituent components of the aqueous solution. The reported 3D printing approach expands the range of low‐viscosity materials that can be used in 3D printing, and enables robust constructs production with internal nanostructures and spatially defined features. The reported approach has broad applications in regenerative medicine by providing a platform to print self‐assembling biomaterials into complex tissue mimics where internal supramolecular structures and their functionality control biological processes, similar to natural extracellular matrices. 
    more » « less
  4. Abstract Materials with tunable modulus, viscosity, and complex viscoelastic spectra are crucial in applications such as self-healing, additive manufacturing, and energy damping. It is still challenging to predictively design polymer networks with hierarchical relaxation processes, as many competing factors affect dynamics. Here, networks with both pendant and telechelic architecture are synthesized with mixed orthogonal dynamic bonds to understand how the network connectivity and bond exchange mechanisms govern the overall relaxation spectrum. A hydrogen-bonding group and a vitrimeric dynamic crosslinker are combined into the same network, and multimodal relaxation is observed in both pendant and telechelic networks. This is in stark contrast to similar networks where two dynamic bonds share the same exchange mechanism. With the incorporation of orthogonal dynamic bonds, the mixed network also demonstrates excellent damping and improved mechanical properties. In addition, two relaxation processes arise when only hydrogen-bond exchange is present, and both modes are retained in the mixed dynamic networks. This work provides molecular insights for the predictive design of hierarchical dynamics in soft materials. 
    more » « less
  5. null (Ed.)
    The rapid equilibrium fluctuations of water molecules are intimately connected to the rheological response; molecular motions resetting the local structure and stresses seen as flow and volume changes. In the case of water or hydrogen bonding liquids generally, the relationship is a non-trivial consideration due to strong directional interactions complicating theoretical models and necessitating clear observation of the timescale and nautre of the associated equilibrium motions. Recent work has illustrated a coincidence of timescales for short range sub-picosecond motions and the implied timescale for the shear viscosity response in liquid water. Here, neutron and light scattering methods are used to experimentally illustrate the timescale of bulk viscosity and provide a description of the associated molecular relaxation. Brillouin scattering has been used to establish the timescale of bulk viscosity; and borrowing the Maxwell approach, the ratio of the bulk viscosity, ζ , to the bulk modulus, K , yields a relaxation time, τ B , which emerges on the order of 1–2 ps in the 280 K to 303 K temperature range. Inelastic neutron scattering is subsequently used to describe the motions of water and heavy water at the molecular scale, providing both coherent and incoherent scattering data. A rotational (alternatively described as localized) motion of water protons on the 1–2 ps timescale is apparent in the incoherent scattering spectra of water, while the coherent spectra from D 2 O on the length scale of the first sharp diffraction peak, describing the microscopic density fluctuations of water, confirms the relaxation of water structure at a comparable timescale of 1–2 ps. The coincidence of these three timescales provides a mechanistic description of the bulk viscous response, with the local structure resetting due to rotational/localized motions on the order of 1–2 ps, approximately three times slower than the relaxations associated with shear viscosity. In this way we show that the shear viscous response is most closely associated with changes in water network connectivity, while the bulk viscous response is associated with local density fluctuations. 
    more » « less