skip to main content


Title: Beyond Not-Forgetting: Continual Learning with Backward Knowledge Transfer
By learning a sequence of tasks continually, an agent in continual learning (CL) can improve the learning performance of both a new task and `old' tasks by leveraging the forward knowledge transfer and the backward knowledge transfer, respectively. However, most existing CL methods focus on addressing catastrophic forgetting in neural networks by minimizing the modification of the learnt model for old tasks. This inevitably limits the backward knowledge transfer from the new task to the old tasks, because judicious model updates could possibly improve the learning performance of the old tasks as well. To tackle this problem, we first theoretically analyze the conditions under which updating the learnt model of old tasks could be beneficial for CL and also lead to backward knowledge transfer, based on the gradient projection onto the input subspaces of old tasks. Building on the theoretical analysis, we next develop a ContinUal learning method with Backward knowlEdge tRansfer (CUBER), for a fixed capacity neural network without data replay. In particular, CUBER first characterizes the task correlation to identify the positively correlated old tasks in a layer-wise manner, and then selectively modifies the learnt model of the old tasks when learning the new task. Experimental studies show that CUBER can even achieve positive backward knowledge transfer on several existing CL benchmarks for the first time without data replay, where the related baselines still suffer from catastrophic forgetting (negative backward knowledge transfer). The superior performance of CUBER on the backward knowledge transfer also leads to higher accuracy accordingly.  more » « less
Award ID(s):
1931871 2144751
NSF-PAR ID:
10389141
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Thirty-Sixth Conference on Neural Information Processing Systems
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In continual learning, a system learns from non-stationary data streams or batches without catastrophic forgetting. While this problem has been heavily studied in supervised image classification and reinforcement learning, continual learning in neural networks designed for abstract reasoning has not yet been studied. Here, we study continual learning of analogical reasoning. Analogical reasoning tests such as Raven's Progressive Matrices (RPMs) are commonly used to measure non-verbal abstract reasoning in humans, and recently offline neural networks for the RPM problem have been proposed. In this paper, we establish experimental baselines, protocols, and forward and backward transfer metrics to evaluate continual learners on RPMs. We employ experience replay to mitigate catastrophic forgetting. Prior work using replay for image classification tasks has found that selectively choosing the samples to replay offers little, if any, benefit over random selection. In contrast, we find that selective replay can significantly outperform random selection for the RPM task. 
    more » « less
  2. Catastrophic forgetting is one of the major challenges in continual learning. To address this issue, some existing methods put restrictive constraints on the optimization space of the new task for minimizing the interference to old tasks. However, this may lead to unsatisfactory performance for the new task, especially when the new task is strongly correlated with old tasks. To tackle this challenge, we propose Trust Region Gradient Projection (TRGP) for continual learning to facilitate the forward knowledge transfer based on an efficient characterization of task correlation. Particularly, we introduce a notion of 'trust region' to select the most related old tasks for the new task in a layer-wise and single-shot manner, using the norm of gradient projection onto the subspace spanned by task inputs. Then, a scaled weight projection is proposed to cleverly reuse the frozen weights of the selected old tasks in the trust region through a layer-wise scaling matrix. By jointly optimizing the scaling matrices and the model, where the model is updated along the directions orthogonal to the subspaces of old tasks, TRGP can effectively prompt knowledge transfer without forgetting. Extensive experiments show that our approach achieves significant improvement over related state-of-the-art methods. 
    more » « less
  3. Existing work in continual learning (CL) focuses on mitigating catastrophic forgetting, i.e., model performance deterioration on past tasks when learning a new task. However, the training efficiency of a CL system is under-investigated, which limits the real-world application of CL systems under resource-limited scenarios. In this work, we propose a novel framework called Sparse Continual Learning(SparCL), which is the first study that leverages sparsity to enable cost-effective continual learning on edge devices. SparCL achieves both training acceleration and accuracy preservation through the synergy of three aspects: weight sparsity, data efficiency, and gradient sparsity. Specifically, we propose task-aware dynamic masking (TDM) to learn a sparse network throughout the entire CL process, dynamic data removal (DDR) to remove less informative training data, and dynamic gradient masking (DGM) to sparsify the gradient updates. Each of them not only improves efficiency, but also further mitigates catastrophic forgetting. SparCL consistently improves the training efficiency of existing state-of-the-art (SOTA) CL methods by at most 23X less training FLOPs, and, surprisingly, further improves the SOTA accuracy by at most 1.7%. SparCL also outperforms competitive baselines obtained from adapting SOTA sparse training methods to the CL setting in both efficiency and accuracy. We also evaluate the effectiveness of SparCL on a real mobile phone, further indicating the practical potential of our method. 
    more » « less
  4. This paper studies continual learning (CL) for sentiment classification (SC). In this setting, the CL system learns a sequence of SC tasks incrementally in a neural network, where each task builds a classifier to classify the sentiment of reviews of a particular product category or domain. Two natural questions are: Can the system transfer the knowledge learned in the past from the previous tasks to the new task to help it learn a better model for the new task? And, can old models for previous tasks be improved in the process as well? This paper proposes a novel technique called KAN to achieve these objectives. KAN can markedly improve the SC accuracy of both the new task and the old tasks via forward and backward knowledge transfer. The effectiveness of KAN is demonstrated through extensive experiments. 
    more » « less
  5. The recent success of deep neural networks in prediction tasks on wearable sensor data is evident. However, in more practical online learning scenarios, where new data arrive sequentially, neural networks suffer severely from the ``catastrophic forgetting`` problem. In real-world settings, given a pre-trained model on the old data, when we collect new data, it is practically infeasible to re-train the model on both old and new data because the computational costs will increase dramatically as more and more data arrive in time. However, if we fine-tune the model only with the new data because the new data might be different from the old data, the neural network parameters will change to fit the new data. As a result, the new parameters are no longer suitable for the old data. This phenomenon is known as catastrophic forgetting, and continual learning research aims to overcome this problem with minimal computational costs. While most of the continual learning research focuses on computer vision tasks, implications of catastrophic forgetting in wearable computing research and potential avenues to address this problem have remained unexplored. To address this knowledge gap, we study continual learning for activity recognition using wearable sensor data. We show that the catastrophic forgetting problem is a critical challenge for real-world deployment of machine learning models for wearables. Moreover, we show that the catastrophic forgetting problem can be alleviated by employing various training techniques. 
    more » « less