Knot filtered embedded contact homology was first introduced by Hutchings in 2015; it has been computed for the standard transverse unknot in irrational ellipsoids by Hutchings and for the Hopf link in lens spaces via a quotient by Weiler. While toric constructions can be used to understand the ECH chain complexes of many contact forms adapted to open books with binding the unknot and Hopf link, they do not readily adapt to general torus knots and links. In this paper, we generalize the definition and invariance of knot filtered embedded contact homology to allow for degenerate knots with rational rotation numbers. We then develop new methods for understanding the embedded contact homology chain complex of positive torus knotted fibrations of the standard tight contact 3‐sphere in terms of their presentation as open books and as Seifert fiber spaces. We provide Morse–Bott methods, using a doubly filtered complex and the energy filtered perturbed Seiberg–Witten Floer theory developed by Hutchings and Taubes, and use them to compute the knot filtered embedded contact homology, for odd and positive.
more »
« less
An elementary alternative to ECH capacities
The embedded contact homology (ECH) capacities are a sequence of numerical invariants of symplectic four-manifolds that give (sometimes sharp) obstructions to symplectic embeddings. These capacities are defined using embedded contact homology, and establishing their basic properties currently requires Seiberg–Witten theory. In this paper we define a sequence of symplectic capacities in four dimensions using only basic notions of holomorphic curves. The capacities satisfy the same basic properties as ECH capacities and agree with the ECH capacities for the main examples for which the latter have been computed, namely convex and concave toric domains. The capacities are also useful for obstructing symplectic embeddings into closed symplectic four-manifolds. This work is inspired by a recent preprint of McDuff and Siegel [D. McDuff, K. Siegel, arXiv [Preprint] (2021)], giving a similar elementary alternative to symplectic capacities from rational symplectic field theory (SFT).
more »
« less
- Award ID(s):
- 2005437
- PAR ID:
- 10389159
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 119
- Issue:
- 35
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We use explicit pseudoholomorphic curve techniques (without virtual perturbations) to define a sequence of symplectic capacities analogous to those defined recently by the second named author using symplectic field theory. We then compute these capacities for all four-dimensional convex toric domains. This gives various new obstructions to stabilized symplectic embedding problems which are sometimes sharp.more » « less
-
A symplectic rational cuspidal curve with positive self-intersection number admits a concave neighborhood, and thus a corresponding contact manifold on the boundary. In this article, we study symplectic fillings of such contact manifolds, providing a complementary perspective to our earlier article on symplectic isotopy classes of rational cuspidal curves. We explore aspects of these symplectic fillings through Stein handlebodies and rational blow-downs. We give examples of such contact manifolds which are identifiable as links of normal surface singularities, other examples which admit no symplectic fillings, and further examples where the fillings can be fully classified.more » « less
-
We apply Menke’s JSJ decomposition for symplectic fillings to several families of contact 3-manifolds. Among other results, we complete the classification up to orientation-preserving diffeomorphism of strong symplectic fillings of lens spaces. We show that exact symplectic fillings of contact manifolds obtained by surgery on certain Legendrian negative cables are the result of attaching a Weinstein 2-handle to an exact filling of a lens space. For large families of contact structures on Seifert fibered spaces over , we reduce the problem of classifying exact symplectic fillings to the same problem for universally tight or canonical contact structures. Finally, virtually overtwisted circle bundles over surfaces with genus greater than one and negative twisting number are seen to have unique exact fillings.more » « less
-
Abstract This is the first in a series of papers dedicated to the study of Poisson manifolds of compact types (PMCTs). This notion encompassesseveral classes of Poisson manifolds defined via properties of their symplectic integrations. In this first paper we establish some fundamentalproperties and constructions of PMCTs. For instance, we show that their Poisson cohomology behaves very much like thede Rham cohomology of a compact manifold (Hodge decomposition, non-degenerate Poincaré duality pairing, etc.)and that the Moser trick can be adapted to PMCTs. More important, we find unexpected connections between PMCTs and symplectic topology: PMCTsare related with the theory of Lagrangian fibrations and we exhibit a construction of a non-trivialPMCT related to a classical question on the topology of the orbits of a free symplectic circle action.In subsequent papers, we will establish deep connections between PMCTs and integral affine geometry,Hamiltonian G -spaces, foliation theory, orbifolds, Lie theory and symplectic gerbes.more » « less
An official website of the United States government

