skip to main content


Title: Arctic Sea Ice Decline and Geoengineering Solutions: Cascading Security and Ethical Considerations.
Climate change is generating sufficient risk for nation‐states and citizens throughout the Arctic to warrant potentially radical geoengineering solutions. Currently, geoengineering solutions such as surface albedo modification or aerosol deployment are in the early stages of testing and development. Due to the scale of deployments necessary to enact change, and their preliminary nature, these methods are likely to result in unforeseen consequences. These consequences may range in severity from local ecosystem impacts to large scale changes in available solar energy. The Arctic is an area that is experiencing rapid change, increased development, and exploratory interest, and proposed solutions have the potential to produce new risks to both natural and human systems. This article examines potential security and ethical considerations of geoengineering solutions in the Arctic from the perspectives of securitization, consequentialism, and risk governance ap‐ proaches, and argues that proactive and preemptive frameworks at the international level, and es‐ pecially the application of risk governance approaches, will be needed to prevent or limit negative consequences resulting from geoengineering efforts. Utilizing the unique structures already present in Arctic governance provides novel options for addressing these concerns from both the perspec‐ tive of inclusive governance and through advancing the understanding of uncertainty analysis and precautionary principles.  more » « less
Award ID(s):
1749081
NSF-PAR ID:
10389262
Author(s) / Creator(s):
Date Published:
Journal Name:
Challenges
Volume:
13
Issue:
1
ISSN:
2568-4019
Page Range / eLocation ID:
22
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Collaborative governance has emerged as a promising approach for addressing complex water sustainability issues, with purported benefits from enhanced democracy to improved environmental outcomes. Collaborative processes are often assumed to be inherently more equitable than traditional governance approaches due to their goal of engaging diverse actors in the development of policy and management solutions. However, when collaborative water governance processes ignore issues of politics and power in their design, they risk creating or even exacerbating existing inequities. How, then, can collaborative water governance processes be designed to enhance, rather than undermine, equity? To answer this question, we first conduct an extensive review of the collaborative governance literature to identify common design features of collaborative processes, which each present potential benefits and challenges for actualizing equitable collaborative water governance. After critically discussing these design features, we explore how they are executed through two case studies of collaborative water governance in western North America: groundwater governance reform in California and transnational Colorado River Delta governance. In reflecting on these cases, we chart an agenda for future collaborative water governance research and practice that moves beyond engaging diverse actors to promoting equity among them.

    This article is categorized under:

    Human Water > Water Governance

    Science of Water > Water and Environmental Change

    Engineering Water > Planning Water

     
    more » « less
  2. Abstract

    The security, resilience, and sustainability of urban water supply systems (UWSS) are challenged by global change pressures, including climate and land use changes, rapid urbanization, and population growth. Building on prior work on UWSS security and resilience, we quantify the sustainability of UWSS based on the performance of local sustainable governance and the size of global water and ecological footprints. We develop a new framework that integrates security, resilience, and sustainability to investigate trade-offs between these three distinct and inter-related dimensions. Security refers to the level of services, resilience is the system’s ability to respond to and recover from shocks, and sustainability refers to local and global impacts, and to the long-term viability of system services. Security and resilience are both relevant at local scale (city and surroundings), while for sustainability cross-scale and -sectoral feedbacks are important. We apply the new framework to seven cities selected from diverse hydro-climatic and socio-economic settings on four continents. We find that UWSS security, resilience, and local sustainability coevolve, while global sustainability correlates negatively with security. Approaching these interdependent goals requires governance strategies that balance the three dimensions within desirable and viable operating spaces. Cities outside these boundaries risk system failure in the short-term, due to lack of security and resilience, or face long-term consequences of unsustainable governance strategies. We discuss these risks in the context of poverty and rigidity traps. Our findings have strong implications for policy-making, strategic management, and for designing systems to operate sustainably at local and global scales.

     
    more » « less
  3. null (Ed.)
    Abstract. Previous climate modeling studies demonstrate the ability of feedback-regulated, stratospheric aerosol geoengineering with injection at multiple independent latitudes to meet multiple simultaneous temperature-based objectives in the presence of anthropogenic climate change. However, the impacts of climate change are not limited to rising temperatures but also include changes in precipitation, loss of sea ice, and many more; knowing how a given geoengineering strategy will affect each of these climate metrics is vital to understanding the limits and trade-offs of geoengineering. In this study, we first introduce a new method of visualizing the design space in which desired climate outcomes are represented by 2-D surfaces on a 3-D graph. Surface orientations represent how different injection choices influence that objective, and intersecting surfaces represent objectives which can be met simultaneously. Using this representation as a guide, we present simulations of two new strategies for feedback-regulated aerosol injection, using the Community Earth System Model with the Whole Atmosphere Community Climate Model – CESM1(WACCM). The first simultaneously manages global mean temperature, tropical precipitation centroid, and Arctic sea ice extent, while the second manages global mean precipitation, tropical precipitation centroid, and Arctic sea ice extent. Both simulations control the tropical precipitation centroid to within 5 % of the goal, and the latter controls global mean precipitation to within 1 % of the goal. Additionally, the first simulation overcompensates sea ice, while the second undercompensates sea ice; all of these results are consistent with the expectations of our design space model. In addition to showing that precipitation-based climate metrics can be managed using feedback alongside other goals, our simulations validate the utility of our design space visualization in predicting our climate model behavior under a given geoengineering strategy, and together they help illustrate the fundamental limits and trade-offs of stratospheric aerosol geoengineering. 
    more » « less
  4. Solar geoengineering, or deliberate climate modification, has been receiving increased attention in recent years. Given the far-reaching consequences of any potential solar geoengineering deployments, it is prudent to identify inherent biases, blind spots, and other potential issues at all stages of the research process. Here we articulate a feminist science-based framework to concretely describe how solar geoengineering researchers can be more inclusive of different perspectives and potentially contradictory conclusions, in the process illuminating potential implicit bias and enhancing the conclusions that can be gained from their studies. Importantly, this framework is an adoptable method of practice that can be refined, with the aim of conducting better research in solar geoengineering. As an illustration, we retrospectively apply this framework to a well-read solar geoengineering study (also led by the first author of this study), improving transparency by revealing its implicit values, conclusions made from its evidence base, and the methodologies that study pursues. We conclude with a set of recommendations for the geoengineering research community whereby more inclusive research can become a regular part of practice. Throughout this process, we illustrate how feminist science scholars can use this approach to study climate modeling.

     
    more » « less
  5. Abstract. The Geoengineering Model Intercomparison Project (GeoMIP) is a coordinating framework, started in 2010, that includes a series of standardized climate model experiments aimed at understanding the physical processes and projected impacts of solar geoengineering. Numerous experiments have been conducted, and numerous more have been proposed as “test-bed” experiments, spanning a variety of geoengineering techniques aimed at modifying the planetary radiation budget: stratospheric aerosol injection, marine cloud brightening, surface albedo modification, cirrus cloud thinning, and sunshade mirrors. To date, more than 100 studies have been published that used results from GeoMIP simulations. Here we provide a critical assessment of GeoMIP and its experiments. We discuss its successes and missed opportunities, for instance in terms of which experiments elicited more interest from the scientific community and which did not, and the potential reasons why that happened. We also discuss the knowledge that GeoMIP has contributed to the field of geoengineering research and climate science as a whole: what have we learned in terms of intermodel differences, robustness of the projected outcomes for specific geoengineering methods, and future areas of model development that would be necessary in the future? We also offer multiple examples of cases where GeoMIP experiments were fundamental for international assessments of climate change. Finally, we provide a series of recommendations, regarding both future experiments and more general activities, with the goal of continuously deepening our understanding of the effects of potential geoengineering approaches and reducing uncertainties in climate outcomes, important for assessing wider impacts on societies and ecosystems. In doing so, we refine the purpose of GeoMIP and outline a series of criteria whereby GeoMIP can best serve its participants, stakeholders, and the broader science community. 
    more » « less