skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Supramolecular Loading of DNA Hydrogels with Dye–Drug Conjugates for Real‐Time Photoacoustic Monitoring of Chemotherapy
Abstract A longstanding problem with conventional cancer therapy is the nonspecific distribution of chemotherapeutics. Monitoring drug release in vivo via noninvasive bioimaging can thus have value, but it is difficult to distinguish loaded from released drug in live tissue. Here, this work describes an injectable supramolecular hydrogel that allows slow and trackable release of doxorubicin (Dox) via photoacoustic (PA) tomography. Dox is covalently linked with photoacoustic methylene blue (MB) to monitor Dox before, during, and after release from the hydrogel carrier. The conjugate (MB‐Dox) possesses an IC50 of 161.4 × 10−9 magainst human ovarian carcinoma (SKOV3) cells and loads into a DNA‐clad hydrogel with 91.3% loading efficiency due to MB‐Dox's inherent intramolecular affinity to DNA. The hydrogel is biodegradable by nuclease digestion, which causes gradual release of MB‐Dox. This release rate is tunable based on the wt% of the hydrogel. This hydrogel maintains distinct PA contrast on the order of days when injected in vivo and demonstrates activatable PA spectral shifts   during hydrogel degradation. The released and loaded payload can be imaged relative to live tissue via PA and ultrasound signal being overlaid in real‐time. The hydrogel slowed the rate of the murine intraperitoneal tumor growth 72.2% more than free Dox.  more » « less
Award ID(s):
1845683
PAR ID:
10389789
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Science
Volume:
10
Issue:
1
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Tumor microenvironment responsive drug delivery systems are potential approaches to reduce the acute toxicity caused by high-dose cancer chemotherapy. Notwithstanding the conventional nano-drug delivery systems, the redox and pH stimuli drug delivery systems are currently gaining attention. Therefore, the current study was designed to compare three different covalent carbon dots (C-dots) systems based on doxorubicin (dox) release profiles and cancer cell viability efficacy under acidic and physiological conditions. The C-dots nanosystems that were examined in this study are directly conjugated (C-dots-dox), pH triggered (C-dots-HBA-dox), and the redox stimuli (C-dots-S–S-dox) conjugates. The drug loading content (DLC%) of the C-dots-S–S-dox, C-dots-HBA-dox, and C-dots-dox was 34.2 ± 0.4, 60.0 ± 0.3, and 70.0 ± 0.2%, respectively, that examined by UV-vis spectral analysis. The dox release paradigms were emphasized that all three conjugates were promisingly released the dox from C-dots faster in acidic pH than in physiological pH. The displayed highest dox released percentage in the acidic medium was 74.6 ± 0.8% obtained by the pH stimuli, C-dots-HBA-dox conjugate. When introducing the redox inducer, dithiothreitol (DTT), preferentially, the redox stimuli C-dot-S–S-dox conjugate demonstrated a faster dox release at acidic pH than in the pH 7.4. The SJGBM2 cell viability experiments revealed that the pH stimuli, C-dots-HBA-dox conjugate, displayed a significant cell viability drop in the artificially acidified pH 6.4 medium. However, in the physiological pH, the redox stimuli, C-dots-S–S-dox conjugate, was promising over the pH stimuli C-dots-HBA-dox, exhibiting cell viability of 60%, though its’ efficacy dropped slightly in the artificially acidified pH 6.4 medium. Moreover, the current study illustrates the stimuli conjugates’ remarkable efficacy on sustain drug release than direct amide linkage. 
    more » « less
  2. Abstract Non‐spherical stimuli‐responsive polymeric particles have shown critical importance in therapeutic delivery. Herein, pH‐responsive poly(methacrylic acid) (PMAA) cubic hydrogel microparticles are synthesized by crosslinking PMAA layers within PMAA/poly(N‐vinylpyrrolidone) hydrogen‐bonded multilayers templated on porous inorganic microparticles. This study investigates the effects of template porosity and surface morphology on the PMAA multilayer hydrogel microcube properties. It is found that the hydrogel structure depends on the template's calcination time and temperature. The pH‐triggered PMAA hydrogel cube swelling depends on the hydrogel's internal architecture, either hollow capsule‐like or non‐hollow continuous hydrogels. The loading efficiency of the doxorubicin (DOX) drug inside the microcubes is analyzed by high‐performance liquid chromatography (HPLC), and shows the dependenceof the drug uptake on the network structure and morphology controlled by the template porosity. Varying the template calcination from low (300 °C) to high (1000 °C) temperature results in a 2.5‐fold greater DOX encapsulation by the hydrogel cubes. The effects of hydrogel surface charge on the DOX loading and release are also studied using zeta‐potential measurements. This work provides insight into the effect of structural composition, network morphology, and pH‐induced swelling of the cubical hydrogels and may advance the development of stimuli‐responsive vehicles for targeted anticancer drug delivery. 
    more » « less
  3. Abstract Doxorubicin (Dox), a widely used anticancer DNA-binding drug, affects chromatin in multiple ways, and these effects contribute to both its efficacy and its dose-limiting side effects, especially cardiotoxicity. Here, we studied the effects of Dox on the chromatin binding of the architectural proteins high mobility group B1 (HMGB1) and the linker histone H1, and the transcription factor retinoic acid receptor (RARα) by fluorescence recovery after photobleaching (FRAP) and fluorescence correlation spectroscopy (FCS) in live cells. At lower doses, Dox increased the binding of HMGB1 to DNA while decreasing the binding of the linker histone H1. At higher doses that correspond to the peak plasma concentrations achieved during chemotherapy, Dox reduced the binding of HMGB1 as well. This biphasic effect is interpreted in terms of a hierarchy of competition between the ligands involved and Dox-induced local conformational changes of nucleosome-free DNA. Combined, FRAP and FCS mobility data suggest that Dox decreases the overall binding of RARα to DNA, an effect that was only partially overcome by agonist binding. The intertwined interactions described are likely to contribute to both the effects and side effects of Dox. 
    more » « less
  4. Abstract Injectable hydrogels are valuable tools in tissue engineering and regenerative medicine due to their unique advantages of injectability with minimal invasiveness and usability for irregularly shaped sites. However, it remains challenging to achieve scalable manufacturing together with matching physicochemical properties and on‐demand drug release for a high level of control over biophysical and biomedical cues to direct endogenous cells. Here, the use of an injectable fibro‐gel is demonstrated, a water‐filled network of entangled hydrogel microfibers, whose physicochemical properties and drug release profiles can be tailored to overcome these shortcomings. This fibro‐gel exhibits favorable in vitro biocompatibility and the capability to aid vascularization. The potential use of the fibro‐gel for advancing tissue regeneration is explored with a mice excision skin model. Preliminary in vivo tests indicate that the fibro‐gel promotes wound healing and new healthy tissue regeneration at a faster rate than a commercial gel. Moreover, it is demonstrated that the release of distinct drugs at different rates can further accelerate wound healing with higher efficiency, by using a two‐layer fibro‐gel model. The combination of injectability and tailorable properties of this fibro‐gel offers a promising approach in biomedical fields such as therapeutic delivery, medical dressings, and 3D tissue scaffolds for tissue engineering. 
    more » « less
  5. Abstract Shortwave infrared (SWIR) dyes are characterized by their ability to absorb light from 900 to 1400 nm, which is ideal for deep tissue imaging owing to minimized light scattering and interference from endogenous pigments. An approach to access such molecules is to tune the photophysical properties of known near‐infrared dyes. Herein, we report the development of a series of easily accessible (three steps) SWIR xanthene dyes based on a dibenzazepine donor conjugated to thiophene (SCR‐1), thienothiophene (SCR‐2), or bithiophene (SCR‐3). We leverage the fact thatSCR‐1undergoes a bathochromic shift when aggregated for in vivo studies by developing a ratiometric nanoparticle for NO (rNP‐NO), which we employed to successfully visualize pathological levels of nitric oxide in a drug‐induced liver injury model via deep tissue SWIR photoacoustic (PA) imaging. Our work demonstrates how easily this dye series can be utilized as a component in nanosensor designs for imaging studies. 
    more » « less