skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Polyhedral Specification and Code Generation of Sparse Tensor Contraction with Co-iteration
This article presents a code generator for sparse tensor contraction computations. It leverages a mathematical representation of loop nest computations in the sparse polyhedral framework (SPF), which extends the polyhedral model to support non-affine computations, such as those that arise in sparse tensors. SPF is extended to perform layout specification, optimization, and code generation of sparse tensor code: (1) We develop a polyhedral layout specification that decouples iteration spaces for layout and computation; and (2) we develop efficient co-iteration of sparse tensors by combining polyhedra scanning over the layout of one sparse tensor with the synthesis of code to find corresponding elements in other tensors through an SMT solver. We compare the generated code with that produced by a state-of-the-art tensor compiler, TACO. We achieve on average 1.63× faster parallel performance than TACO on sparse-sparse co-iteration and describe how to improve that to 2.72× average speedup by switching the find algorithms. We also demonstrate that decoupling iteration spaces of layout and computation enables additional layout and computation combinations to be supported.  more » « less
Award ID(s):
2107556 2107135 2106621
PAR ID:
10390059
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Architecture and Code Optimization
Volume:
20
Issue:
1
ISSN:
1544-3566
Page Range / eLocation ID:
1 to 26
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The inspector/executor paradigm permits using runtime information in concert with compiler optimization. An inspector collects information that is only available at runtime; this information is used by an optimized executor that was created at compile time. Inspectors are widely used in optimizing irregular computations, where information about data dependences, loop bounds, data structures, and memory access pa erns are collected at runtime and used to guide code transformation, parallelization, and data layout. Most research that uses inspectors relies on instantiating inspector templates, invoking inspector library code, or manually writing inspectors. is paper describes abstractions for generating inspectors for loop and data transformations for sparse matrix computations using the Sparse Polyhedral Framework (SPF). SPF is an extension of the polyhedral framework for transformation and code generation. SPF extends the polyhedral framework to represent runtime information with uninterpreted functions and inspector computations that explicitly realize such functions at runtime. It has previously been used to derive inspectors for data and iteration space reordering. is paper introduces data transformations into SPF, such as conversions between sparse matrix formats, and show how prior work can be supported by SPF. We also discuss possible extensions to support inspector composition and incorporate other optimizations. is work represents a step towards creating composable inspectors in keeping with the composability of a ne transformations on the executors. 
    more » « less
  2. Sparse tensor networks represent contractions over multiple sparse tensors. Tensor contractions are higher-order analogs of matrix multiplication. Tensor networks arise commonly in many domains of scientific computing and data science. Such networks are typically computed using a tree of binary contractions. Several critical inter-dependent aspects must be considered in the generation of efficient code for a contraction tree, including sparse tensor layout mode order, loop fusion to reduce intermediate tensors, and the mutual dependence of loop order, mode order, and contraction order. We propose CoNST, a novel approach that considers these factors in an integrated manner using a single formulation. Our approach creates a constraint system that encodes these decisions and their interdependence, while aiming to produce reduced-order intermediate tensors via fusion. The constraint system is solved by the Z3 SMT solver and the result is used to create the desired fused loop structure and tensor mode layouts for the entire contraction tree. This structure is lowered to the IR of the TACO compiler, which is then used to generate executable code. Our experimental evaluation demonstrates significant performance improvements over current state-of-the-art sparse tensor compiler/library alternatives. 
    more » « less
  3. Many important applications including machine learning, molecular dynamics, and computational fluid dynamics, use sparse data. Processing sparse data leads to non-affine loop bounds and frustrates the use of the polyhedral model for code transformation. The Sparse Polyhedral Framework (SPF) addresses limitations of the Polyhedral model by supporting non-affine constraints in sets and relations using uninterpreted functions. This work contributes an object-oriented API that wraps the SPF intermediate representation (IR) and integrates the Inspector/Executor Generation Library and Omega+ for precise set and relation manipulation and code generation. The result is a well-specified definition of a full computation using the SPF IR. The API provides a single entry point for tools to interact with the SPF, generate and manipulate polyhedral data flow graphs, and transform sparse applications. 
    more » « less
  4. Scientific applications, especially legacy applications, contain a wealth of scientific knowledge. As hardware changes, applications need to be ported to new architectures and extended to include scientific advances. As a result, it is common to encounter problems like performance bottlenecks and dead code. A visual representation of the dataflow can help performance experts identify and debug such problems. The Computation API of the sparse polyhedral framework (SPF) provides a single entry point for tools to generate and manipulate polyhedral dataflow graphs, and transform applications. However, when viewing graphs generated for scientific applications there are several barriers. The graphs are large, and manipulating their layout to respect execution order is difficult. This paper presents a case study that uses the Computation API to represent a scientific application, GeoAc, in the SPF. Generated polyhedral dataflow graphs were explored for optimization opportunities and limitations were addressed using several graph simplifications to improve their usability. 
    more » « less
  5. Cathie Olschanowsky (Ed.)
    Sparse computations are important in scientific computing. Many scientific applications compute on sparse data. Data is said to be sparse if it has a relatively small number of non-zeros. Sparse formats use auxiliary arrays to store non-zeros, as a result, the contents of auxiliary arrays are not known until run-time. The Inspector/Executor (I/E) paradigm uses run-time information for compiler optimizations. An inspector computes information at run-time to drive transformations. The executor—a compile-time transformation of the original code— uses information computed by the inspector. The sparse polyhedral framework (SPF) encompasses a series of tools to support I/E run-time transformations. This work introduces a unified framework that wraps SPF tools while providing a holistic view of computation as an intermediate representation (IR). This work also introduces a method to automatically synthesize inspectors to transform between sparse formats and improvements to SPF to explore the performance of irregular applications. 
    more » « less