skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Title: High‐Throughput Screening Assisted Discovery of a Stable Layered Anti‐Ferromagnetic Semiconductor: CdFeP 2 Se 6
Abstract

Recent advances in 2D magnetism have heightened interest in layered magnetic materials due to their potential for spintronics. In particular, layered semiconducting antiferromagnets exhibit intriguing low‐dimensional semiconducting behavior with both charge and spin as carrier controls. However, synthesis of these compounds is challenging and remains rare. Here, first‐principles based high‐throughput search is conducted to screen potentially stable mixed metal phosphorous trichalcogenides (MMP2X6, where M and Mare transition metals and X is a chalcogenide) that have a wide range of tunable bandgaps and interesting magnetic properties. Among the potential candidates, a stable semiconducting layered magnetic material, CdFeP2Se6, that exhibits a short‐range antiferromagnetic order atTN = 21 K with an indirect bandgap of 2.23 eV is successfully synthesized . This work suggests that high‐throughput screening assisted synthesis can be an effective method for layered magnetic materials discovery.

 
more » « less
Award ID(s):
2210933
NSF-PAR ID:
10390095
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
33
Issue:
9
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    New acceptor‐type graphite intercalation compounds (GICs) offer candidates of cathode materials for dual‐ion batteries (DIBs), where superhalides represent the emerging anion charge carriers for such batteries. Here, the reversible insertion of [LiCl2]into graphite from an aqueous deep eutectic solvent electrolyte of 20mLiCl+20mcholine chloride is reported. [LiCl2]is the primary anion species in this electrolyte as revealed by the femtosecond stimulated Raman spectroscopy results, particularly through the rarely observed H–O–H bending mode. The insertion of Li–Cl anionic species is suggested by7Li magic angle spinning nuclear magnetic resonance results that describe a unique chemical environment of Li+ions with electron donors around.2H nuclear magnetic resonance results suggest that water molecules are co‐inserted into graphite. Density functional theory calculations reveal that the anionic insertion of hydrated [LiCl2]takes place at a lower potential, being more favorable. X‐ray diffraction and the Raman results show that the insertion of [LiCl2]creates turbostratic structure in graphite instead of forming long‐range ordered GICs. The storage of [LiCl2]in graphite as a cathode for DIBs offers a capacity of 114 mAh g−1that is stable over 440 cycles.

     
    more » « less
  2. Abstract

    Multifunctional materials that are capable of facilitating multiple electrocatalytic processes are highly desirable. This work reports the observation of bifunctional electrocatalytic properties for water‐splitting in layered oxides, featuring 2‐dimensional layers of octahedrally coordinated transition metals separated by alkaline‐earth or rare‐earth metals. Remarkably, these materials are able to catalyze both half‐reactions of water‐splitting,i. e., oxygen‐evolution reaction (OER) and hydrogen‐evolution reaction (HER). Electrical charge‐transport studies of SrLaFe1‐xCoxO4‐δin a wide range of temperatures, 25 to 800 °C, indicate semiconducting behavior for all three compounds, where there is a systematic increase in electrical conductivity as a function of temperature. The end member of the series, SrLaCoO4‐δ, exhibits the highest electrical charge transport and best electrocatalytic activity toward both OER and HER. This catalyst also features the highest degree of polyhedral distortion as well as the presence of oxygen‐vacancies. In addition, the transition metals in this material have a favorable electronic configuration for enhanced electrocatalytic activity.

     
    more » « less
  3. Abstract

    Two-dimensional (2D) ternary materials recently generated interest in optoelectronics and energy-related applications, alongside their binary counterparts. To date, only a few naturally occurring layered 2D ternary materials have been explored. The plethora of benefits owed to reduced dimensionality prompted exploration of expanding non-layered ternary chalcogenides into the 2D realm. This work presents a templating method that uses 2D transition metal dichalcogenides as initiators to be converted into the corresponding ternary chalcogenide upon addition of copper, via a solution-phase synthesis, conducted in high boiling point solvents. The process starts with preparation of VSe2nanosheets, which are next converted into Cu3VSe4sulvanite nanosheets (NSs) which retain the 2D geometry while presenting an X-ray diffraction pattern identical with the one for the bulk Cu3VSe4. Both the scanning electron microscopy and transmission microscopy electron microscopy show the presence of quasi-2D morphology. Recent studies of the sulfur-containing sulvanite Cu3VS4highlight the presence of an intermediate bandgap, associated with enhanced photovoltaic (PV) performance. The Cu3VSe4nanosheets reported herein exhibit multiple UV–Vis absorption peaks, related to the intermediate bandgaps similar to Cu3VS4and Cu3VSe4nanocrystals. To test the potential of Cu3VSe4NSs as an absorber for solar photovoltaic devices, Cu3VSe4NSs thin-films deposited on FTO were subjected to photoelectrochemical testing, showing p-type behavior and stable photocurrents of up to ~ 0.036 mA/cm2. The photocurrent shows a ninefold increase in comparison to reported performance of Cu3VSe4nanocrystals. This proves that quasi-2D sulvanite nanosheets are amenable to thin-film deposition and could show superior PV performance in comparison to nanocrystal thin-films. The obtained electrical impedance spectroscopy signal of the Cu3VSeNSs-FTO based electrochemical cell fits an equivalent circuit with the circuit elements of solution resistance (Rs), charge-transfer resistance (Rct), double-layer capacitance (Cdl), and Warburg impedance (W). The estimated charge transfer resistance value of 300 Ω cm2obtained from the Nyquist plot provides an insight into the rate of charge transfer on the electrode/electrolyte interface.

     
    more » « less
  4. Abstract

    The discovery of long-range magnetic ordering in atomically thin materials catapulted the van der Waals (vdW) family of compounds into an unprecedented popularity, leading to potentially important technological applications in magnetic storage and magneto-transport devices, as well as photoelectric sensors. With the potential for the use of vdW materials in space exploration technologies it is critical to understand how the properties of such materials are affected by ionizing proton irradiation. Owing to their robust intra-layer stability and sensitivity to external perturbations, these materials also provide excellent opportunities for studying proton irradiation as a non-destructive tool for controlling their magnetic properties. Specifically, the exfoliable Cr2Si2Te6(CST) is a ferromagnetic semiconductor with the Curie temperature (TC) of ∼32 K. Here, we have investigated the magnetic properties of CST upon proton irradiation as a function of fluence (1 × 1015, 5 × 1015, 1 × 1016, 5 × 1016, and 1 × 1018H+/cm−2) by employing variable-temperature, variable-field magnetization measurements, and detail how the magnetization, magnetic anisotropy vary as a function of proton fluence across the magnetic phase transition. While theTCremains constant as a function of proton fluence, we observed that the saturation magnetization and magnetic anisotropy diverge at the proton fluence of 5 × 1016H+/cm−2, which is prominent in the ferromagnetic phase, in particular.This work demonstrates that proton irradiation is a feasible method for modifying the magnetic properties and local magnetic interactions of vdWs crystals, which represents a significant step forward in the design of future spintronic and magneto-electronic applications.

     
    more » « less
  5. Abstract

    The emergence of conductive 2D and less commonly 3D coordination polymers (CPs) and metal–organic frameworks (MOFs) promises novel applications in many fields. However, the synthetic parameters for these electronically complex materials are not thoroughly understood. Here we report a new 3D semiconducting CPFe5(C6O6)3, which is a fusion of 2D Fe‐semiquinoid materials and 3D cubicFex(C6O6)ymaterials, by using a different initial redox‐state of the C6O6linker. The material displays high electrical conductivity (0.02 S cm−1), broad electronic transitions, promising thermoelectric behavior (S2σ=7.0×10−9 W m−1 K−2), and strong antiferromagnetic interactions at room temperature. This material illustrates how controlling the oxidation states of redox‐active components in conducting CPs/MOFs can be a “pre‐synthetic” strategy to carefully tune material topologies and properties in contrast to more commonly encountered post‐synthetic modifications.

     
    more » « less