skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Simple and Approximately Optimal Mechanism for a Buyer with Complements
We consider a revenue-maximizing seller with m heterogeneous items and a single buyer whose valuation for the items may exhibit both substitutes and complements. We show that the better of selling the items separately and bundling them together— guarantees a [Formula: see text]-fraction of the optimal revenue, where d is a measure of the degree of complementarity; it extends prior work showing that the same simple mechanism achieves a constant-factor approximation when buyer valuations are subadditive (the most general class of complement-free valuations). Our proof is enabled by a recent duality framework, which we use to obtain a bound on the optimal revenue in the generalized setting. Our technical contributions are domain specific to handle the intricacies of settings with complements. One key modeling contribution is a tractable notion of “degree of complementarity” that admits meaningful results and insights—we demonstrate that previous definitions fall short in this regard.  more » « less
Award ID(s):
1942497
PAR ID:
10390168
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Operations Research
Volume:
69
Issue:
1
ISSN:
0030-364X
Page Range / eLocation ID:
188 to 206
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Large fractions of online advertisements are sold via repeated second-price auctions. In these auctions, the reserve price is the main tool for the auctioneer to boost revenues. In this work, we investigate the following question: how can the auctioneer optimize reserve prices by learning from the previous bids while accounting for the long-term incentives and strategic behavior of the bidders? To this end, we consider a seller who repeatedly sells ex ante identical items via a second-price auction. Buyers’ valuations for each item are drawn independently and identically from a distribution F that is unknown to the seller. We find that if the seller attempts to dynamically update a common reserve price based on the bidding history, this creates an incentive for buyers to shade their bids, which can hurt revenue. When there is more than one buyer, incentive compatibility can be restored by using personalized reserve prices, where the personal reserve price for each buyer is set using the historical bids of other buyers. Such a mechanism asymptotically achieves the expected revenue obtained under the static Myerson optimal auction for F. Further, if valuation distributions differ across bidders, the loss relative to the Myerson benchmark is only quadratic in the size of such differences. We extend our results to a contextual setting where the valuations of the buyers depend on observed features of the items. When up-front fees are permitted, we show how the seller can determine such payments based on the bids of others to obtain an approximately incentive-compatible mechanism that extracts nearly all the surplus. 
    more » « less
  2. We study the revenue guarantees and approximability of item pricing. Recent work shows that with n heterogeneous items, item-pricing guarantees an O(logn) approximation to the optimal revenue achievable by any (buy-many) mechanism, even when buyers have arbitrarily combinatorial valuations. However, finding good item prices is challenging – it is known that even under unit-demand valuations, it is NP-hard to find item prices that approximate the revenue of the optimal item pricing better than O(√n). Our work provides a more fine-grained analysis of the revenue guarantees and computational complexity in terms of the number of item “categories” which may be significantly fewer than n. We assume the items are partitioned in k categories so that items within a category are totally-ordered and a buyer’s value for a bundle depends only on the best item contained from every category. We show that item-pricing guarantees an O(logk) approximation to the optimal (buy-many) revenue and provide a PTAS for computing the optimal item-pricing when k is constant. We also provide a matching lower bound showing that the problem is (strongly) NP-hard even when k=1. Our results naturally extend to the case where items are only partially ordered, in which case the revenue guarantees and computational complexity depend on the width of the partial ordering, i.e. the largest set for which no two items are comparable. 
    more » « less
  3. Online pricing has been the focus of extensive research in recent years, particularly in the context of selling an item to sequentially arriving users. However, what if a provider wants to maximize revenue by selling multiple items to multiple users in each round? This presents a complex problem, as the provider must intelligently offer the items to those users who value them the most without exceeding their highest acceptable prices. In this study, we tackle this challenge by designing online algorithms that can efficiently offer and price items while learning user valuations from accept/reject feedback. We focus on three user valuation models (fixed valuations, random experiences, and random valuations) and provide algorithms with nearly-optimal revenue regret guarantees. In particular, for any market setting with N users, M items, and load L (which roughly corresponds to the maximum number of simultaneous allocations possible), our algorithms achieve regret of order O(NMloglog(LT)) under fixed valuations model, O(√NMLT) under random experiences model and O(√NMLT) under random valuations model in T rounds. 
    more » « less
  4. We study revenue optimization in a repeated auction between a single seller and a single buyer. Traditionally, the design of repeated auctions requires strong modeling assumptions about the bidder behavior, such as it being myopic, infinite lookahead, or some specific form of learning behavior. Is it possible to design mechanisms which are simultaneously optimal against a multitude of possible buyer behaviors? We answer this question by designing a simple state-based mechanism that is simultaneously approximately optimal against a k-lookahead buyer for all k, a buyer who is a no-regret learner, and a buyer who is a policy-regret learner. Against each type of buyer our mechanism attains a constant fraction of the optimal revenue attainable against that type of buyer. We complement our positive results with almost tight impossibility results, showing that the revenue approximation tradeoffs achieved by our mechanism for different lookahead attitudes are near-optimal. 
    more » « less
  5. We propose a new architecture to approximately learn incentive compatible, revenue-maximizing auctions from sampled valuations. Our architecture uses the Sinkhorn algorithm to perform a differentiable bipartite matching which allows the network to learn strategyproof revenue-maximizing mechanisms in settings not learnable by the previous RegretNet architecture. In particular, our architecture is able to learn mechanisms in settings without free disposal where each bidder must be allocated exactly some number of items. In experiments, we show our approach successfully recovers multiple known optimal mechanisms and high-revenue, low-regret mechanisms in larger settings where the optimal mechanism is unknown. 
    more » « less