skip to main content


Title: Large-Scale System Identification Using a Randomized SVD
Learning a dynamical system from input/output data is a fundamental task in the control design pipeline. In the partially observed setting there are two components to identification: parameter estimation to learn the Markov parameters, and system realization to obtain a state space model. In both sub-problems it is implicitly assumed that standard numerical algorithms such as the singular value decomposition (SVD) can be easily and reliably computed. When trying to fit a high-dimensional model to data, even computing an SVD may be intractable. In this work we show that an approximate matrix factorization obtained using randomized methods can replace the standard SVD in the realization algorithm while maintaining the finite-sample performance and robustness guarantees of classical methods.  more » « less
Award ID(s):
2144634
NSF-PAR ID:
10390335
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the 2022 American Control Conference (ACC)
Page Range / eLocation ID:
2178 to 2185
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Most cyber–physical systems (CPS) encounter a large volume of data which is added to the system gradually in real time and not altogether in advance. In this paper, we provide a theoretical framework that yields optimal control strategies for such CPS at the intersection of control theory and learning. In the proposed framework, we use the actual CPS, i.e., the ‘‘true" system that we seek to optimally control online, in parallel with a model of the CPS that is available. We then institute an information state for the system which does not depend on the control strategy. An important consequence of this independence is that for any given choice of a control strategy and a realization of the system’s variables until time t, the information states at future times do not depend on the choice of the control strategy at time t but only on the realization of the decision at time t, and thus they are related to the concept of separation between estimation of the state and control. Namely, the future information states are separated from the choice of the current control strategy. Such control strategies are called separated control strategies. Hence, we can derive offline the optimal control strategy of the system with respect to the information state, which might not be precisely known due to model uncertainties or complexity of the system, and then use standard learning approaches to learn the information state online while data are added gradually to the system in real time. We show that after the information state becomes known, the separated control strategy of the CPS model derived offline is optimal for the actual system. We illustrate the proposed framework in a dynamic system consisting of two subsystems with a delayed sharing information structure. 
    more » « less
  2. null (Ed.)
    X-ray diffraction (XRD) was an important analytical component of International Ocean Discovery Program (IODP) Expeditions 372 and 375 in the Hikurangi subduction zone. This report documents the composition of standard mineral mixtures that we used to calibrate computations of mineral abundance in bulk powder and clay-sized fractions of the sediment. Shipboard analyses of the bulk powders were completed on the R/V JOIDES Resolution using a Bruker D4 Endeavor diffractometer, and reduction of those data utilized two types of software (MacDiff and Bruker DIFFRAC.EVA). To evaluate precision more rigorously, we replicated the bulk powder analyses at the New Mexico Bureau of Geology and Mineral Resources (New Mexico Tech; United States) using a Panalytical X'Pert Pro diffractometer, and MacDiff software was used for data reduction. The relation between peak area (integrated intensity) and weight percent in the bulk powder mixtures is constrained in two ways: a matrix of normalization factors, derived by singular value decomposition (SVD), and polynomial regression equations. Differences in results between the two computational methods are trivial. Absolute errors (known weight percent − computed weight percent) average less than 3 wt%, which is a level of accuracy more than sufficient to satisfy the scientific goals of shipboard XRD. The clay-sized standards were analyzed only at New Mexico Tech, and MacDiff software was used for data reduction. For computations of weight percent using those raw data, we tested three computations: Biscaye weighting factors, SVD normalization factors, and regression equations. Results using the SVD normalization factors and regression equations are significantly more accurate than those using Biscaye weighting factors. 
    more » « less
  3. null (Ed.)
    Abstract We revisit a singular value decomposition (SVD) algorithm given in Chen et al. (Psychometrika 84:124–146, 2019b) for exploratory item factor analysis (IFA). This algorithm estimates a multidimensional IFA model by SVD and was used to obtain a starting point for joint maximum likelihood estimation in Chen et al. (2019b). Thanks to the analytic and computational properties of SVD, this algorithm guarantees a unique solution and has computational advantage over other exploratory IFA methods. Its computational advantage becomes significant when the numbers of respondents, items, and factors are all large. This algorithm can be viewed as a generalization of principal component analysis to binary data. In this note, we provide the statistical underpinning of the algorithm. In particular, we show its statistical consistency under the same double asymptotic setting as in Chen et al. (2019b). We also demonstrate how this algorithm provides a scree plot for investigating the number of factors and provide its asymptotic theory. Further extensions of the algorithm are discussed. Finally, simulation studies suggest that the algorithm has good finite sample performance. 
    more » « less
  4. Abstract

    Trans-arterial chemoembolization (TACE) is an important yet variably effective treatment for management of hepatic malignancies. Lack of response can be in part due to inability to assess treatment adequacy in real-time. Gold-standard contrast enhanced computed tomography and magnetic resonance imaging, although effective, suffer from treatment-induced artifacts that prevent early treatment evaluation. Non-contrast ultrasound is a potential solution but has historically been ineffective at detecting treatment response. Here, we propose non-contrast ultrasound with recent perfusion-focused advancements as a tool for immediate evaluation of TACE. We demonstrate initial feasibility in an 11-subject pilot study. Treatment-induced changes in tumor perfusion are detected best when combining adaptive demodulation (AD) and singular value decomposition (SVD) techniques. Using a 0.5 s (300-sample) ensemble size, AD + SVD resulted in a 7.42 dB median decrease in tumor power after TACE compared to only a 0.06 dB median decrease with conventional methods.

     
    more » « less
  5. Modern deep neural networks (DNNs) often require high memory consumption and large computational loads. In order to deploy DNN algorithms efficiently on edge or mobile devices, a series of DNN compression algorithms have been explored, including factorization methods. Factorization methods approximate the weight matrix of a DNN layer with the multiplication of two or multiple low-rank matrices. However, it is hard to measure the ranks of DNN layers during the training process. Previous works mainly induce low-rank through implicit approximations or via costly singular value decomposition (SVD) process on every training step. The former approach usually induces a high accuracy loss while the latter has a low efficiency. In this work, we propose SVD training, the first method to explicitly achieve low-rank DNNs during training without applying SVD on every step. SVD training first decomposes each layer into the form of its full-rank SVD, then performs training directly on the decomposed weights. We add orthogonality regularization to the singular vectors, which ensure the valid form of SVD and avoid gradient vanishing/exploding. Low-rank is encouraged by applying sparsity-inducing regularizers on the singular values of each layer. Singular value pruning is applied at the end to explicitly reach a low-rank model. We empirically show that SVD training can significantly reduce the rank of DNN layers and achieve higher reduction on computation load under the same accuracy, comparing to not only previous factorization methods but also state-of-the-art filter pruning methods. 
    more » « less