skip to main content

Search for: All records

Award ID contains: 1934482

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The demand for high power and high-frequency radio frequency (RF) power amplifiers makes AlGaN/GaN high electron mobility transistors (HEMTs) an attractive option due to their large critical field, high saturation velocity, and reduced device footprint as compared to Si-based counterparts. However, due to the high operating power densities, intense device self-heating occurs, which degrades the electrical performance and compromises the device’s reliability. The self-heating behavior of AlGaN/GaN HEMTs is known to be not solely a function of the dissipated power but is highly bias-dependent. As the operation of RF power amplifiers involves alteration of the device operation from fully-open to pinched-off channel conditions, it is critical to experimentally map the full channel temperature profile as a function of bias conditions. However, such measurement is difficult using optical thermography techniques due to the lack of optical access underneath the gate electrode, where the peak temperature is expected to occur.

    To address this challenge, an AlGaN/GaN HEMT employing a transparent gate made of indium tin oxide (ITO) was fabricated, which enables full channel temperature mapping using Raman spectroscopy. It was found that the maximum channel temperature rise under a partially pinched-off condition is more than ∼93% higher than that for an openmore »channel condition, although both conditions would lead to an identical power dissipation level. The channel peak temperature probed in an ITO-gated device (underneath the gate) is ∼33% higher than the highest channel temperature that can be measured for a standard metal-gated AlGaN/GaN HEMT (i.e., next to the metal gate structure) operating under an identical bias condition. This indicates that one may significantly underestimate the device’s thermal resistance when solely relying on performing thermal characterization on the optically accessible region of a standard AlGaN/GaN HEMT. The outcomes of this study are important in terms of conducting a more accurate lifetime prediction of the device lifetime and designing thermal management solutions.

    « less
    Free, publicly-accessible full text available December 7, 2023
  2. Featuring broadband operation and high efficiency, gallium nitride (GaN)-based radio frequency (RF) power amplifiers are key components to realize the next generation mobile network. However, to fully implement GaN high electron mobility transistors (HEMT) for such applications, it is necessary to overcome thermal reliability concerns stemming from localized extreme temperature gradients that form under high voltage and power operation. In this work, we developed a deep-ultraviolet thermoreflectance thermal imaging capability, which can potentially offer the highest spatial resolution among diffraction-limited far-field optical thermography techniques. Experiments were performed to compare device channel temperatures obtained from near-ultraviolet and deep-ultraviolet wavelength illumination sources for the proof of concept of the new characterization method. Deep-ultraviolet thermoreflectance imaging will facilitate the study of device self-heating within transistors based on GaN and emerging ultra-wide bandgap semiconductors (e.g., β-Ga2O3, AlxGa1-xN, and diamond) subjected to simultaneous extreme electric field and heat flux conditions.
    Free, publicly-accessible full text available September 30, 2023
  3. In this study, we compared the transient self-heating behavior of a homoepitaxial β-Ga2O3 MOSFET and a GaN-on-Si HEMT using nanoparticle-assisted Raman thermometry and thermoreflectance thermal imaging. The effectiveness of bottom-side and double-side cooling schemes using a polycrystalline diamond substrate and a diamond passivation layer were studied via transient thermal modeling. Because of the low thermal diffusivity of β-Ga2O3, the use of a β-Ga2O3 composite substrate (bottom-side cooling) must be augmented by a diamond passivation layer (top-side cooling) to effectively cool the device active region under both steady-state and transient operating conditions. Without no proper cooling applied, the steady-state device-to-package thermal resistance of a homoepitaxial β-Ga2O3 MOSFET is 2.6 times higher than that for a GaN-on-Si HEMT. Replacing the substrate with polycrystalline diamond (under a 6.5 μm-thick β-Ga2O3 layer) could reduce the steady-state temperature rise by 65% compared to that for a homoepitaxial β-Ga2O3 MOSFET. However, for high frequency power switching applications beyond the ~102 kHz range, bottom-side cooling (integration with a high thermal conductivity substrate) does not improve the transient thermal response of the device. Adding a diamond passivation over layer diamond not only suppresses the steadystate temperature rise, but also drastically reduces the transient temperature rise under high frequencymore »operating conditions.« less
    Free, publicly-accessible full text available September 30, 2023