skip to main content


Title: Roof Shape Classification from LiDAR and Satellite Image Data Fusion Using Supervised Learning
Geographic information systems (GIS) provide accurate maps of terrain, roads, waterways, and building footprints and heights. Aircraft, particularly small unmanned aircraft systems (UAS), can exploit this and additional information such as building roof structure to improve navigation accuracy and safely perform contingency landings particularly in urban regions. However, building roof structure is not fully provided in maps. This paper proposes a method to automatically label building roof shape from publicly available GIS data. Satellite imagery and airborne LiDAR data are processed and manually labeled to create a diverse annotated roof image dataset for small to large urban cities. Multiple convolutional neural network (CNN) architectures are trained and tested, with the best performing networks providing a condensed feature set for support vector machine and decision tree classifiers. Satellite image and LiDAR data fusion is shown to provide greater classification accuracy than using either data type alone. Model confidence thresholds are adjusted leading to significant increases in models precision. Networks trained from roof data in Witten, Germany and Manhattan (New York City) are evaluated on independent data from these cities and Ann Arbor, Michigan.  more » « less
Award ID(s):
1738714
NSF-PAR ID:
10110449
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Sensors
Volume:
18
Issue:
11
ISSN:
1424-8220
Page Range / eLocation ID:
3960
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The Local Climate Zone (LCZ) classification is already widely used in urban heat island and other climate studies. The current classification method does not incorporate crucial urban auxiliary GIS data on building height and imperviousness that could significantly improve urban-type LCZ classification utility as well as accuracy. This study utilized a hybrid GIS- and remote sensing imagery-based framework to systematically compare and evaluate different machine and deep learning methods. The Convolution Neural Network (CNN) classifier outperforms in terms of accuracy, but it requires multi-pixel input, which reduces the output’s spatial resolution and creates a tradeoff between accuracy and spatial resolution. The Random Forest (RF) classifier performs best among the single-pixel classifiers. This study also shows that incorporating building height dataset improves the accuracy of the high- and mid-rise classes in the RF classifiers, whereas an imperviousness dataset improves the low-rise classes. The single-pass forward permutation test reveals that both auxiliary datasets dominate the classification accuracy in the RF classifier, while near-infrared and thermal infrared are the dominating features in the CNN classifier. These findings show that the conventional LCZ classification framework used in the World Urban Database and Access Portal Tools (WUDAPT) can be improved by adopting building height and imperviousness information. This framework can be easily applied to different cities to generate LCZ maps for urban models. 
    more » « less
  2. Abstract

    Efficient and accurate building damage assessment is crucial for effective emergency response and resource allocation following natural hazards. However, traditional methods are often time consuming and labor intensive. Recent advancements in remote sensing and artificial intelligence (AI) have made it possible to automate the damage assessment process, and previous studies have made notable progress in machine learning classification. However, the application in postdisaster emergency response requires an end‐to‐end model that starts with satellite imagery as input and automates the generation of large‐scale damage maps as output, which was rarely the focus of previous studies. Addressing this gap, this study integrates satellite imagery, Geographic Information Systems (GIS), and deep learning. This enables the creation of comprehensive, large‐scale building damage assessment maps, providing valuable insights into the extent and spatial variation of damage. The effectiveness of this methodology is demonstrated in Galveston County following Hurricane Ike, where the classification of a large ensemble of buildings was automated using deep learning models trained on the xBD data set. The results showed that utilizing GIS can automate the extraction of subimages with high accuracy, while fine‐tuning can enhance the robustness of the damage classification to generate highly accurate large‐scale damage maps. Those damage maps were validated against historical reports.

     
    more » « less
  3. Automatic satellite-based reconstruction enables large and widespread creation of urban areas. However, satellite imagery is often noisy and incomplete, and is not suitable for reconstructing detailed building facades. We present a machine learning-based inverse procedural modeling method to automatically create synthetic facades from satellite imagery. Our key observation is that building facades exhibit regular, grid-like structures. Hence, we can overcome the low-resolution, noisy, and partial building data obtained from satellite imagery by synthesizing the underlying facade layout. Our method infers regular facade details from satellite-based image-fragments of a building, and applies them to occluded or under-sampled parts of the building, resulting in plausible, crisp facades. Using urban areas from six cities, we compare our approach to several state-of-the-art image completion/in-filling methods and our approach consistently creates better facade images. 
    more » « less
  4. Abstract

    The vertical dimensions of urban morphology, specifically the heights of trees and buildings, exert significant influence on wind flow fields in urban street canyons and the thermal environment of the urban fabric, subsequently affecting the microclimate, noise levels, and air quality. Despite their importance, these critical attributes are less commonly available and rarely utilized in urban climate models compared to planar land use and land cover data. In this study, we explicitly mapped theheight oftreesandbuildings (HiTAB) across the city of Chicago at 1 m spatial resolution using a data fusion approach. This approach integrates high-precision light detection and ranging (LiDAR) cloud point data, building footprint inventory, and multi-band satellite images. Specifically, the digital terrain and surface models were first created from the LiDAR dataset to calculate the height of surface objects, while the rest of the datasets were used to delineate trees and buildings. We validated the derived height information against the existing building database in downtown Chicago and the Meter-scale Urban Land Cover map from the Environmental Protection Agency, respectively. The co-investigation on trees and building heights offers a valuable initiative in the effort to inform urban land surface parameterizations using real-world data. Given their high spatial resolution, the height maps can be adopted in physical-based and data-driven urban models to achieve higher resolution and accuracy while lowering uncertainties. Moreover, our method can be extended to other urban regions, benefiting from the growing availability of high-resolution urban informatics globally. Collectively, these datasets can substantially contribute to future studies on hyper-local weather dynamics, urban heterogeneity, morphology, and planning, providing a more comprehensive understanding of urban environments.

     
    more » « less
  5. Morphological (e.g. shape, size, and height) and function (e.g. working, living, and shopping) information of buildings is highly needed for urban planning and management as well as other applications such as city-scale building energy use modeling. Due to the limited availability of socio-economic geospatial data, it is more challenging to map building functions than building morphological information, especially over large areas. In this study, we proposed an integrated framework to map building functions in 50 U.S. cities by integrating multi-source web-based geospatial data. First, a web crawler was developed to extract Points of Interest (POIs) from Tripadvisor.com, and a map crawler was developed to extract POIs and land use parcels from Google Maps. Second, an unsupervised machine learning algorithm named OneClassSVM was used to identify residential buildings based on landscape features derived from Microsoft building footprints. Third, the type ratio of POIs and the area ratio of land use parcels were used to identify six non-residential functions (i.e. hospital, hotel, school, shop, restaurant, and office). The accuracy assessment indicates that the proposed framework performed well, with an average overall accuracy of 94% and a kappa coefficient of 0.63. With the worldwide coverage of Google Maps and Tripadvisor.com, the proposed framework is transferable to other cities over the world. The data products generated from this study are of great use for quantitative city-scale urban studies, such as building energy use modeling at the single building level over large areas. 
    more » « less