skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Customizable, reconfigurable, and anatomically coordinated large-area, high-density electromyography from drawn-on-skin electrode arrays
Abstract Accurate anatomical matching for patient-specific electromyographic (EMG) mapping is crucial yet technically challenging in various medical disciplines. The fixed electrode construction of multielectrode arrays (MEAs) makes it nearly impossible to match an individual's unique muscle anatomy. This mismatch between the MEAs and target muscles leads to missing relevant muscle activity, highly redundant data, complicated electrode placement optimization, and inaccuracies in classification algorithms. Here, we present customizable and reconfigurable drawn-on-skin (DoS) MEAs as the first demonstration of high-density EMG mapping from in situ-fabricated electrodes with tunable configurations adapted to subject-specific muscle anatomy. The DoS MEAs show uniform electrical properties and can map EMG activity with high fidelity under skin deformation-induced motion, which stems from the unique and robust skin-electrode interface. They can be used to localize innervation zones (IZs), detect motor unit propagation, and capture EMG signals with consistent quality during large muscle movements. Reconfiguring the electrode arrangement of DoS MEAs to match and extend the coverage of the forearm flexors enables localization of the muscle activity and prevents missed information such as IZs. In addition, DoS MEAs customized to the specific anatomy of subjects produce highly informative data, leading to accurate finger gesture detection and prosthetic control compared with conventional technology.  more » « less
Award ID(s):
2227063
PAR ID:
10391222
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
PNAS Nexus
Volume:
2
Issue:
1
ISSN:
2752-6542
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Cerebrovascular accidents like a stroke can affect the lower limb as well as upper extremity joints (i.e., shoulder, elbow, or wrist) and hinder the ability to produce necessary torque for activities of daily living. In such cases, muscles’ ability to generate forces reduces, thus affecting the joint’s torque production. Understanding how muscles generate forces is a key element to injury detection. Researchers have developed several computational methods to obtain muscle forces and joint torques. Electromyography (EMG) driven modeling is one of the approaches to estimate muscle forces and obtain joint torques from muscle activity measurements. Musculoskeletal models and EMG-driven models require necessary muscle-specific parameters for the calculation. The focus of this study is to investigate the EMG-driven approach along with an upper extremity musculoskeletal model to determine muscle forces of two major muscle groups, biceps brachii and triceps brachii, consisting of seven muscle-tendon units. Estimated muscle forces are used to determine the elbow joint torque. Experimental EMG signals and motion capture data are collected for a healthy subject. The musculoskeletal model is scaled to match the geometric parameters of the subject. Then, the approach calculates muscle forces and joint moment for two tasks: simple elbow flexion extension and triceps kickback. Individual muscle forces and net joint torques for both tasks are estimated. The study also has compared the effect of muscle-tendon parameters (optimal fiber length and tendon slack length) on the estimated results. 
    more » « less
  2. Abstract Estimating muscle forces is crucial for understanding joint dynamics and improving rehabilitation strategies, particularly for patients with neurological disorders who suffer from impaired muscle function. Muscle forces are directly proportional to muscle activations, which can be obtained using electromyography (EMG). EMG-driven modeling estimates muscle forces and joint moments from muscle activations. While surface muscles' activations can be obtained using surface electrodes, deep muscles require invasive methods and are not readily available for real-time applications. This study aims to extend our previously developed method for a single unmeasured muscle to a comprehensive approach for the simultaneous prediction of multiple unmeasured muscle activations in the upper extremity using muscle synergy extrapolation and EMG-driven modeling. By employing non-negative matrix factorization to decompose known EMG data into synergy components, the activations of unmeasured muscles are reconstructed with high accuracy by minimizing differences between joint moments obtained by EMG-driven modeling and inverse dynamics. This methodology is validated through experimentally collected muscle activations, demonstrating over 90% correlation with EMG signals in various scenarios. 
    more » « less
  3. Abstract Dysphagia or difficulty swallowing is caused by the failure of neurological pathways to properly activate swallowing muscles. Current electromyography (EMG) systems for dysphagia monitoring are bulky and rigid, limiting their potential for long‐term and unobtrusive use. To address this, a machine learning‐assisted wearable EMG system is presented, utilizing self‐adhesive, skin‐conformal, semi‐transparent, and robust ionic gel electrodes. The presented electrodes possess good conductivity, superior skin contact, and good transmittance, ensuring high‐fidelity EMG sensing without impeding daily activities. Moreover, the optimized material and structural designs ensure wearing comfort and conformable skin‐electrode contact, allowing for long‐term monitoring with high accuracy. Machine learning and mel‐frequency cepstral coefficient techniques are employed to classify swallowing events based on food types and volumes. Through an analysis of electrode placement on the chin and neck, the proposed system is able to effectively distinguish between different food types and water volumes using a small number of channels, making it suitable for continuous dysphagia monitoring. This work represents an advancement in machine learning assisted EMG systems for the classification and regression of swallowing events, paving the way for more efficient, unobtrusive, and long‐term dysphagia monitoring systems. 
    more » « less
  4. Abstract Objective. Neural signals in residual muscles of amputated limbs are frequently decoded to control powered prostheses. Yet myoelectric controllers assume muscle activity of residual muscle is similar to that of intact muscle. This study sought to understand potential changes to motor unit (MU) properties after limb amputation. Approach. Six people with unilateral transtibial amputation were recruited. Surface electromyogram (EMG) of residual and intact tibialis anterior (TA) and gastrocnemius (GA) muscles were recorded while subjects traced profiles targeting up to 20 and 35% of maximum activation for each muscle (isometric for intact limbs). EMG was decomposed into groups of motor unit (MU) spike trains. MU recruitment thresholds, action potential amplitudes (MU size), and firing rates were correlated to model Henneman’s size principle, the onion-skin phenomenon, and rate-size associations. Organization (correlation) and modulation (rates of change) of relations were compared between intact and residual muscles. Main results. The residual TA exhibited significantly lower correlation and flatter slopes in the size principle and onion-skin, and each outcome covaried between the MU relations. The residual GA was unaffected for most subjects. Subjects trained prior with myoelectric prostheses had minimally affected slopes in the TA. Rate-size association correlations were preserved, but both residual muscles exhibited flatter decay rates. Significance. We showed peripheral neuromuscular damage also leads to spinal-level functional reorganization. Our findings suggest models of MU recruitment and discharge patterns for residual muscle EMG generation need reparameterization to account for disturbances observed. In the future, tracking MU pool adaptations may also provide a biomarker of neuromuscular control to aid training with myoelectric prostheses. 
    more » « less
  5. Abstract Objective.Transcutaneous electrical stimulation of peripheral nerves is a common technique to assist or rehabilitate impaired muscle activation. However, conventional stimulation paradigms activate nerve fibers synchronously with action potentials time-locked with stimulation pulses. Such synchronous activation limits fine control of muscle force due to synchronized force twitches. Accordingly, we developed a subthreshold high-frequency stimulation waveform with the goal of activating axons asynchronously.Approach.We evaluated our waveform experimentally and through model simulations. During the experiment, we delivered continuous subthreshold pulses at frequencies of 16.67, 12.5, or 10 kHz transcutaneously to the median and ulnar nerves. We obtained high-density electromyographic (EMG) signals and fingertip forces to quantify the axonal activation patterns. We used a conventional 30 Hz stimulation waveform and the associated voluntary muscle activation for comparison. We modeled stimulation of biophysically realistic myelinated mammalian axons using a simplified volume conductor model to solve for extracellular electric potentials. We compared the firing properties under kHz and conventional 30 Hz stimulation.Main results.EMG activity evoked by kHz stimulation showed high entropy values similar to voluntary EMG activity, indicating asynchronous axon firing activity. In contrast, we observed low entropy values in EMG evoked by conventional 30 Hz stimulation. The muscle forces evoked by kHz stimulation also showed more stable force profiles across repeated trials compared with 30 Hz stimulation. Our simulation results provide direct evidence of asynchronous firing patterns across a population of axons in response to kHz frequency stimulation, while 30 Hz stimulation elicited synchronized time-locked responses across the population.Significance.We demonstrate that the continuous subthreshold high-frequency stimulation waveform can elicit asynchronous axon firing patterns, which can lead to finer control of muscle forces. 
    more » « less