skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 2:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.

Title: Turbulent heating in a stratified medium

There is considerable evidence for widespread subsonic turbulence in galaxy clusters, most notably from Hitomi. Turbulence is often invoked to offset radiative losses in cluster cores, both by direct dissipation and by enabling turbulent heat diffusion. However, in a stratified medium, buoyancy forces oppose radial motions, making turbulence anisotropic. This can be quantified via the Froude number Fr, which decreases inward in clusters as stratification increases. We exploit analogies with MHD turbulence to show that wave–turbulence interactions increase cascade times and reduce dissipation rates ϵ ∝ Fr. Equivalently, for a given energy injection/dissipation rate ϵ, turbulent velocities u must be higher compared to Kolmogorov scalings. High-resolution hydrodynamic simulations show excellent agreement with the ϵ ∝ Fr scaling, which sets in for Fr ≲ 0.1. We also compare previously predicted scalings for the turbulent diffusion coefficient D ∝ Fr2 and find excellent agreement, for Fr ≲ 1. However, we find a different normalization, corresponding to stronger diffusive suppression by more than an order of magnitude. Our results imply that turbulent diffusion is more heavily suppressed by stratification, over a much wider radial range, than turbulent dissipation. Thus, the latter potentially dominates. Furthermore, this shift implies significantly higher turbulent velocities required to offset cooling, compared to previous models. These results are potentially relevant to turbulent metal diffusion in the galaxy groups and clusters (which is likewise suppressed), and to planetary atmospheres.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Medium: X Size: p. 4408-4423
p. 4408-4423
Sponsoring Org:
National Science Foundation
More Like this
  1. Context. The dynamics of the intracluster medium (ICM) is affected by turbulence driven by several processes, such as mergers, accretion and feedback from active galactic nuclei. Aims. X-ray surface brightness fluctuations have been used to constrain turbulence in galaxy clusters. Here, we use simulations to further investigate the relation between gas density and turbulent velocity fluctuations, with a focus on the effect of the stratification of the ICM. Methods. In this work, we studied the turbulence driven by hierarchical accretion by analysing a sample of galaxy clusters simulated with the cosmological code ENZO. We used a fixed scale filtering approach to disentangle laminar from turbulent flows. Results. In dynamically perturbed galaxy clusters, we found a relation between the root mean square of density and velocity fluctuations, albeit with a different slope than previously reported. The Richardson number is a parameter that represents the ratio between turbulence and buoyancy, and we found that this variable has a strong dependence on the filtering scale. However, we could not detect any strong relation between the Richardson number and the logarithmic density fluctuations, in contrast to results by recent and more idealised simulations. In particular, we find a strong effect from radial accretion, which appears to be the main driver for the gas fluctuations. The ubiquitous radial bias in the dynamics of the ICM suggests that homogeneity and isotropy are not always valid assumptions, even if the turbulent spectra follow Kolmogorov’s scaling. Finally, we find that the slope of the velocity and density spectra are independent of cluster-centric radii. 
    more » « less
  2. The intracluster medium (ICM) in the centers of galaxy clusters is heavily influenced by the “feedback” from supermassive black holes (SMBHs). Feedback can drive turbulence in the ICM and turbulent dissipation can potentially be an important source of heating. Due to the limited spatial and spectral resolutions of X-ray telescopes, direct observations of turbulence in the hot ICM have been challenging. Recently, we developed a new method to measure turbulence in the ICM using multiphase filaments as tracers. These filaments are ubiquitous in cluster centers and can be observed at very high resolution using optical and radio telescopes. We study the kinematics of the filaments by measuring their velocity structure functions (VSFs) over a wide range of scales in the centers of ∼ 10 galaxy clusters. We find features of the VSFs that correlate with the SMBHs activities, suggesting that SMBHs are the main driver of gas motions in the centers of galaxy clusters. In all systems, the VSF is steeper than the classical Kolmogorov expectation and the slopes vary from system to system. One theoretical explanation is that the VSFs we have measured so far mostly reflect the motion of the driver (jets and bubbles) rather than the cascade of turbulence. We show that in Abell 1795, the VSF of the outer filaments far from the SMBH flattens on small scales to a Kolmogorov slope, suggesting that the cascade is only detectable farther out with the current telescope resolution. The level of turbulent heating computed at small scales is typically an order of magnitude lower than that estimated at the driving scale. Even though SMBH feedback heavily influences the kinematics of the ICM in cluster centers, the level of turbulence it drives is rather low, and turbulent heating can only offset ≲ 10% of the cooling loss, consistent with the findings of numerical simulations. 
    more » « less
  3. Abstract Upper-ocean turbulence is central to the exchanges of heat, momentum, and gasses across the air/sea interface, and therefore plays a large role in weather and climate. Current understanding of upper-ocean mixing is lacking, often leading models to misrepresent mixed-layer depths and sea surface temperature. In part, progress has been limited due to the difficulty of measuring turbulence from fixed moorings which can simultaneously measure surface fluxes and upper-ocean stratification over long time periods. Here we introduce a direct wavenumber method for measuring Turbulent Kinetic Energy (TKE) dissipation rates, ϵ , from long-enduring moorings using pulse-coherent ADCPs. We discuss optimal programming of the ADCPs, a robust mechanical design for use on a mooring to maximize data return, and data processing techniques including phase-ambiguity unwrapping, spectral analysis, and a correction for instrument response. The method was used in the Salinity Processes Upper-ocean Regional Study (SPURS) to collect two year-long data sets. We find the mooring-derived TKE dissipation rates compare favorably to estimates made nearby from a microstructure shear probe mounted to a glider during its two separate two-week missions for (10 −8 ) ≤ ϵ ≤ (10 −5 ) m 2 s −3 . Periods of disagreement between turbulence estimates from the two platforms coincide with differences in vertical temperature profiles, which may indicate that barrier layers can substantially modulate upper-ocean turbulence over horizontal scales of 1-10 km. We also find that dissipation estimates from two different moorings at 12.5 m, and at 7 m are in agreement with the surface buoyancy flux during periods of strong nighttime convection, consistent with classic boundary layer theory. 
    more » « less
  4. Abstract

    Observations of salinity, temperature, and turbulent dissipation rate were made in the top meter of the ocean using the ship-towed Surface Salinity Profiler as part of the second Salinity Processes in the Upper Ocean Regional Study (SPURS-2) to assess the relationships between wind, rain, near-surface stratification, and turbulence. A wide range of wind and rain conditions were observed in the eastern tropical Pacific Ocean near 10°N, 125°W in summer–autumn 2016 and 2017. Wind was the primary driver of near-surface turbulence and the mixing of rain-formed fresh lenses, with lenses generally persisting for hours when wind speeds were under 5 m s−1and mixing away immediately at higher wind speeds. Rain influenced near-surface turbulence primarily through stratification. Near-surface stratification caused by rainfall or diurnal warming suppressed deeper turbulent dissipation rates when wind speeds were under 3 m s−1. In one case with 4–5 m s−1winds, rain-induced stratification enhanced dissipation rates within the stratified layer. At wind speeds above 7–8 m s−1, strong stratification was not observed in the upper meter during rain, indicating that rain lenses do not form at wind speeds above 8 m s−1. Raindrop impacts enhanced turbulent dissipation rates at these high wind speeds in the absence of near-surface stratification. Measurements of air–sea buoyancy flux, wind speed, and near-surface turbulence can be used to predict the presence of stratified layers. These findings could be used to improve model parameterizations of air–sea interactions and, ultimately, our understanding of the global water cycle.

    more » « less
  5. Abstract

    We took field observations on the shallow shoals of South San Francisco Bay to examine how sediment‐induced stratification affects the mean flow and mixing of momentum and sediment throughout the water column. A Vectrino Profiler measured near‐bed velocity and suspended sediment concentration profiles, which we used to calculate profiles of turbulent sediment and momentum fluxes. Additional turbulence statistics were calculated using data from acoustic Doppler velocimeters placed throughout the water column. Results showed that sediment‐induced stratification, which was set up by strong near‐bed wave shear, can reduce the frictional bottom drag felt by the mean flow. Measured turbulence statistics suggest that this drag reduction is caused by stratification suppressing near‐bed turbulent fluxes and reducing turbulent kinetic energy dissipation. Turbulent sediment fluxes, however, were not shown to be limited by sediment‐induced stratification. Finally, we compared our results to a common model parameterization which characterizes stratification through a stability parameter modification to the turbulent eddy viscosity and suggest a new nondimensional parameter that may be better suited to represent stratification when modeling oscillatory boundary layer flows.

    more » « less