IPr* (IPr* = 1,3-bis(2,6-bis(diphenylmethyl)-4-methylphenyl)imidazol-2-ylidene) has emerged as a powerful highly hindered and sterically-flexible ligand platform for transition-metal catalysis. CAACs (CAAC = cyclic (al-kyl)(amino)carbenes) have gained major attention as strongly electron-rich carbon analogues of NHCs (NHC = N-heterocyclic carbene) with broad applications in both industry and academia. Herein, we report a merger of CAAC ligands with highly-hindered IPr*. The efficient synthesis, electronic characterization and application in model Cu-catalyzed hydroboration of alkynes is described. The ligands are strongly electron-rich, bulky and flexible around the N-Ar wingtip. The availability of various IPr* and CAAC templates offers a significant potential to expand the existing arsenal of NHC ligands to electron-rich bulky architectures with critical applications in metal stabilization and catalysis.
more »
« less
Cyclic (Alkyl)(amino)carbene Ligands Enable Cu‐Catalyzed Markovnikov Protoboration and Protosilylation of Terminal Alkynes: A Versatile Portal to Functionalized Alkenes**
Abstract Regioselective hydrofunctionalization of alkynes represents a straightforward route to access alkenyl boronate and silane building blocks. In previously reported catalytic systems, high selectivity is achieved with a limited scope of substrates and/or reagents, with general solutions lacking. Herein, we describe a selective copper‐catalyzed Markovnikov hydrofunctionalization of terminal alkynes that is facilitated by strongly donating cyclic (alkyl)(amino)carbene (CAAC) ligands. Using this method, both alkyl‐ and aryl‐substituted alkynes are coupled with a variety of boryl and silyl reagents with high α‐selectivity. The reaction is scalable, and the products are versatile intermediates that can participate in various downstream transformations. Preliminary mechanistic experiments shed light on the role of CAAC ligands in this process.
more »
« less
- Award ID(s):
- 1800598
- PAR ID:
- 10391267
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 60
- Issue:
- 36
- ISSN:
- 1433-7851
- Page Range / eLocation ID:
- p. 19871-19878
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Silver–NHC (NHC = N-heterocyclic carbene) complexes play a special role in the field of transition-metal complexes due to (1) their prominent biological activity, and (2) their critical role as transfer reagents for the synthesis of metal-NHC complexes by transmetalation. However, the application of silver–NHCs in catalysis is underdeveloped, particularly when compared to their group 11 counterparts, gold–NHCs (Au–NHC) and copper–NHCs (Cu–NHC). In this Special Issue on Featured Reviews in Organometallic Chemistry, we present a comprehensive overview of the application of silver–NHC complexes in the p-activation of alkynes. The functionalization of alkynes is one of the most important processes in chemistry, and it is at the bedrock of organic synthesis. Recent studies show the significant promise of silver–NHC complexes as unique and highly selective catalysts in this class of reactions. The review covers p-activation reactions catalyzed by Ag–NHCs since 2005 (the first example of p-activation in catalysis by Ag–NHCs) through December 2022. The review focuses on the structure of NHC ligands and p-functionalization methods, covering the following broadly defined topics: (1) intramolecular cyclizations; (2) CO2 fixation; and (3) hydrofunctionalization reactions. By discussing the role of Ag–NHC complexes in the p-functionalization of alkynes, the reader is provided with an overview of this important area of research and the role of Ag–NHCs to promote reactions that are beyond other group 11 metal–NHC complexes.more » « less
-
Abstract The first cobalt‐catalyzed cross‐coupling of aryl tosylates with alkyl and aryl Grignard reagents is reported. The catalytic system uses CoF3and NHCs (NHC=N‐heterocyclic carbene) as ancillary ligands. The reaction proceeds via highly selective C−O bond functionalization, leading to the corresponding products in up to 98 % yield. The employment of alkyl Grignard reagents allows to achieve a rare C(sp2)−C(sp3) cross‐coupling of C−O electrophiles, circumventing isomerization and β‐hydride elimination problems. The use of aryl Grignards leads to the formation of biaryls. The C−O cross‐coupling sets the stage for a sequential cross‐coupling by exploiting the orthogonal selectivity of the catalytic system.more » « less
-
Abstract A nickel‐catalyzed regiodivergent hydroarylation and hydroalkenylation of unactivated alkenyl carboxylic acids is reported, whereby the ligand environment around the metal center dictates the regiochemical outcome. Markovnikov hydrofunctionalization products are obtained under mild ligand‐free conditions, with up to 99 % yield and >20:1 selectivity. Alternatively, anti‐Markovnikov products can be accessed with a novel 4,4‐disubstituted Pyrox ligand in excellent yield and >20:1 selectivity. Both electronic and steric effects on the ligand contribute to the high yield and selectivity. Mechanistic studies suggest a change in the turnover‐limiting and selectivity‐determining step induced by the optimal ligand. DFT calculations reveal that in the anti‐Markovnikov pathway, repulsion between the ligand and the alkyl group is minimized (by virtue of it being 1° versus 2°) in the rate‐ and regioselectivity‐determining transmetalation transition state.more » « less
-
Aryl benzoates are compounds of high importance in organic synthesis. Herein, we report the iron-catalyzed C(sp2)–C(sp3) Kumada cross-coupling of aryl chlorobenzoates with alkyl Grignard reagents. The method is characterized by the use of environmentally benign and sustainable iron salts for cross-coupling in the catalytic system, employing benign urea ligands in the place of reprotoxic NMP (NMP = N-methyl-2-pyrrolidone). It is notable that high selectivity for the cross-coupling is achieved in the presence of hydrolytically-labile and prone to nucleophilic addition phenolic ester C(acyl)–O bonds. The reaction provides access to alkyl-functionalized aryl benzoates. The examination of various O-coordinating ligands demonstrates the high activity of urea ligands in promoting the cross-coupling versus nucleophilic addition to the ester C(acyl)–O bond. The method showcases the functional group tolerance of iron-catalyzed Kumada cross-couplings.more » « less
An official website of the United States government
