skip to main content


Title: Outdoor-to-indoor 28 GHz wireless measurements in manhattan: path loss, location impacts, and 90% coverage
Outdoor-to-indoor (OtI) signal propagation further challenges link budgets at millimeter-wave (mmWave). To gain insight into OtI mmWaveat28GHz, we conducted an extensive measurement campaign consisting of over 2,000 link measurements in West Harlem, NewYorkCity, covering seven highly diverse buildings. A path loss model constructed over all links shows an average of 30dB excess loss over free space at distances beyond 50m. We find the type of glass to be the dominant factor in OtI loss, with 20dB observed difference between clustered scenarios with low- and high-loss glass. Other factors, such as difference in floor height, are found to have an impact between 5ś10dB. We show that for urban buildings with high-loss glass, OtI data rates up to 400Mb/s are supported for 90% of indoor users by a base station (BS) up to 49m away. For buildings with low-loss glass, such as our case study covering multiple classrooms of a public school, data rates over 2.8/1.4Gb/s are possible from a BS 68/175m away when a line-of-sight path is available. We expect these results to be useful for the deployment of OtI mmWave networks in dense urban environments and the development of scheduling and beam management algorithms.  more » « less
Award ID(s):
1910757 1827923 2148128 2029295
NSF-PAR ID:
10391650
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
in Proc. ACM MOBIHOC’22, 2022
Page Range / eLocation ID:
201 to 210
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Outdoor-to-indoor (OtI) signal propagation further challenges the already tight link budgets at millimeter-wave (mmWave). To gain insight into OtI mmWave scenarios at 28 GHz, we conducted an extensive measurement campaign consisting of over 2,200 link measurements. In total, 43 OtI scenarios were measured in West Harlem, New York City, covering seven highly diverse buildings. The measured OtI path gain can vary by up to 40 dB for a given link distance, and the empirical path gain model for all data shows an average of 30 dB excess loss over free space at distances beyond 50 m, with an RMS fitting error of 11.7 dB. The type of glass is found to be the single dominant feature for OtI loss, with 20 dB observed difference between empirical path gain models for scenarios with low-loss and high-loss glass. The presence of scaffolding, tree foliage, or elevated subway tracks, as well as difference in floor height are each found to have an impact between 5–10 dB. We show that for urban buildings with high-loss glass, OtI coverage can support 500 Mbps for 90% of indoor user equipment (UEs) with a base station (BS) antenna placed up to 49 m away. For buildings with low-loss glass, such as our case study covering multiple classrooms of a public school, data rates over 2.5/1.2 Gbps are possible from a BS 68/175 m away from the school building, when a line-of-sight path is available. We expect these results to be useful for the deployment of mmWave networks in dense urban environments as well as the develop 
    more » « less
  2. Outdoor-to-indoor (OtI) signal propagation further challenges the already tight link budgets at millimeter-wave (mmWave). To gain insight into OtI mmWave scenarios at 28GHz, we conducted an extensive measurement campaign consisting of over 2,200 link measurements. In total, 43 OtI scenarios were measured in West Harlem, NewYork City, covering seven highly diverse buildings. The measured OtI path gain can vary by up to40dBforagivenlink distance, and the empirical path gain model for all data shows an average of 30dB excess loss over free space at distances beyond 50m, with an RMSfitting error of 11.7 dB. The type of glass is found to be the single dominant feature for OtI loss, with 20dB observed difference between empirical path gain models for scenarios with low-loss and high-loss glass. The presence of scaffolding, tree foliage, or elevated subwaytracks, as well as difference in floor height are each found to have animpact between 5–10dB. Weshowthatforurbanbuildings with high-loss glass, OtI coverage can support 500Mbps for 90% of indoor user equipment (UEs) with a base station (BS) antenna placed up to 49m away. For buildings with low-loss glass, such as our case study covering multiple classrooms of a public school, data rates over 2.5/1.2 Gbps are possible from a BS 68/175m away from the school building, when a line-of-sight path is available. We expect these results to be useful for the deployment of mmWave networks in dense urban environments as well as the development of relevant scheduling and beam management algorithms. 
    more » « less
  3. In the US, people spend 87% of their time indoors and have an average of four connected devices per person (in 2020). As such, providing indoor coverage has always been a challenge but becomes even more difficult as carrier frequencies increase to mmWave and beyond. This paper investigates the outdoor and outdoor-indoor coverage of an urban network comparing globally standardized building penetration models and implementing models to corresponding scenarios. The glass used in windows of buildings in the grid plays a pivotal role in determining the outdoor-to-indoor propagation loss. For 28 GHz with 1 W/polarization transmit power in the urban street grid, the downlink data rates for 90% of outdoor users are estimated at over 250 Mbps. In contrast, 15% of indoor users are estimated to be in outage, with SNR < −3 dB when base stations are 400 m apart with one-fifth of the buildings imposing high penetration loss (∼ 35 dB). At 3.5 GHz, base stations may achieve over 250 Mbps for 90% indoor users if 400 MHz bandwidth with 100 W/polarization transmit power is available. The methods and models presented can be used to facilitate decisions regarding the density and transmit power required to provide high data rates to majority users in urban centers. 
    more » « less
  4. Next generation wireless and mobile networks will utilize millimeter-wave (mmWave) communication to achieve significantly increased data rates. However, since mmWave radio signals experience high path loss, the operation of mmWave networks will require accurate channel models designed for specific deployment sites. In this paper, we focus on the deployment area of the PAWR COSMOS testbed [1, 2] in New York City and report extensive 28 GHz channel measurements. These include over 24 million power measurements collected from over 1,500 links on 13 sidewalks in 3 different sites and in different settings during March–June, 2019. Using these measurements, we study the effects of the setup and environments (e.g., transmitter height and seasonal effects). We then discuss the obtained path gain values and their fitted lines, and the resulting effective azimuth beamforming gain. Based on these results, we also study the link SNR values that can be supported on individual sidewalks and the corresponding theoretically achievable data rates. We believe that the results can inform the COSMOS testbed deployment process and provide a benchmark for other deployment efforts in dense urban areas. 
    more » « less
  5. mmWave communication has been recognized as a highly promising technology for 5G wireless backhaul, which is capable of providing multi-gigabit per second transmission rates. However, in urban wireless backhaul environments, unforeseen events can cause short-term blockages or node failures and, therefore, network survivability is extremely important. In this paper, we investigate a novel relay-assisted mmWave backhaul network architecture, where a number of small-cell BSs and relays are deployed, e.g. on the lampposts of urban streets. Relays are used to provide multi-hop line-of-sight paths between small-cell BSs, which form logical links of the network. In this scenario, the interconnected logical links make up a mesh network, which offers opportunities for both link-level and network-level reconfiguration. We propose two joint link-network level reconfiguration schemes for recovery after exceptional events. One prioritizes relay path (link-level) reconfiguration and uses alternate network-level paths only if necessary. The other splits traffic on both reconfigured links and backup paths to improve network throughput. Simulation results demonstrate that the proposed schemes significantly outperform purely link-level and purely network-level reconfiguration schemes. The proposed approaches are shown to not only maintain high network throughput but to also provide robust blockage/fault tolerance across a range of scenarios for urban mmWave backhaul networks. 
    more » « less