Abstract We present a discontinuous Galerkin-finite difference hybrid scheme that allows high-order shock capturing with the discontinuous Galerkin method for general relativistic magnetohydrodynamics in dynamical spacetimes. We present several optimizations and stability improvements to our algorithm that allow the hybrid method to successfully simulate single, rotating, and binary neutron stars. The hybrid method achieves the efficiency of discontinuous Galerkin methods throughout almost the entire spacetime during the inspiral phase, while being able to robustly capture shocks and resolve the stellar surfaces. We also use Cauchy-characteristic evolution to compute the first gravitational waveforms at future null infinity from binary neutron star mergers. The simulations presented here are the first successful binary neutron star inspiral and merger simulations using discontinuous Galerkin methods.
more »
« less
A high-order shock capturing discontinuous Galerkin–finite difference hybrid method for GRMHD
Abstract We present a discontinuous Galerkin (DG)–finite difference (FD) hybrid scheme that allows high-order shock capturing with the DG method for general relativistic magnetohydrodynamics. The hybrid method is conceptually quite simple. An unlimited DG candidate solution is computed for the next time step. If the candidate solution is inadmissible, the time step is retaken using robust FD methods. Because of its a posteriori nature, the hybrid scheme inherits the best properties of both methods. It is high-order with exponential convergence in smooth regions, while robustly handling discontinuities. We give a detailed description of how we transfer the solution between the DG and FD solvers, and the troubled-cell indicators necessary to robustly handle slow-moving discontinuities and simulate magnetized neutron stars. We demonstrate the efficacy of the proposed method using a suite of standard and very challenging 1D, 2D, and 3D relativistic magnetohydrodynamics test problems. The hybrid scheme is designed from the ground up to efficiently simulate astrophysical problems such as the inspiral, coalescence, and merger of two neutron stars.
more »
« less
- PAR ID:
- 10391660
- Date Published:
- Journal Name:
- Classical and Quantum Gravity
- Volume:
- 39
- Issue:
- 19
- ISSN:
- 0264-9381
- Page Range / eLocation ID:
- 195001
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present an adaptive-order positivity-preserving conservative finite-difference scheme that allows a high-order solution away from shocks and discontinuities while guaranteeing positivity and robustness at discontinuities. This is achieved by monitoring the relative power in the highest mode of the reconstructed polynomial and reducing the order when the polynomial series no longer converges. Our approach is similar to the multidimensional optimal order detection strategy, but differs in several ways. The approach isa prioriand so does not require retaking a time step. It can also readily be combined with positivity-preserving flux limiters that have gained significant traction in computational astrophysics and numerical relativity. This combination ultimately guarantees a physical solution both during reconstruction and time stepping. We demonstrate the capabilities of the method using a standard suite of very challenging 1d, 2d, and 3d general relativistic magnetohydrodynamics test problems.more » « less
-
Abstract This article presents high order accurate discontinuous Galerkin (DG) methods for wave problems on moving curved meshes with general choices of basis and quadrature. The proposed method adopts an arbitrary Lagrangian–Eulerian formulation to map the wave equation from a time‐dependent moving physical domain onto a fixed reference domain. For moving curved meshes, weighted mass matrices must be assembled and inverted at each time step when using explicit time‐stepping methods. We avoid this step by utilizing an easily invertible weight‐adjusted approximation. The resulting semi‐discrete weight‐adjusted DG scheme is provably energy stable up to a term that (for a fixed time interval) converges to zero with the same rate as the optimal error estimate. Numerical experiments using both polynomial and B‐spline bases verify the high order accuracy and energy stability of proposed methods.more » « less
-
We present a spacetime DG method for 1D spatial domains and three linear hyperbolic, damped hyperbolic, and parabolic PDEs. The latter two correspond to Maxwell-Cattaneo-Vernotte (MCV) and Fourier heat conduction problems. The method is called the tent-pitcher spacetime DG method (tpSDG) due to its resemblance to the causal spacetime DG method (cSDG) wherein the solution advances in time by pitching spacetime patches. The tpSDG method extends the applicability of such methods from hyperbolic to parabolic and hyperbolic PDEs. For problems with a spatially uniform mesh, a transfer matrix approach is derived wherein the inflow, boundary, and source term values are mapped to the solution coefficient and output values. This resembles a finite difference scheme, but with grid points at the Gauss points of the spatial elements and arbitrarily tunable order of accuracy in spacetime. The spectral stability analysis of the method provides stability correction factors for the parabolic case. Numerical examples demonstrate the applicability of the method to problems with heterogeneous material properties.more » « less
-
In this paper, we consider a class of discontinuous Galerkin (DG) methods for one-dimensional nonlocal diffusion (ND) problems. The nonlocal models, which are integral equations, are widely used in describing many physical phenomena with long-range interactions. The ND problem is the nonlocal analog of the classic diffusion problem, and as the interaction radius (horizon) vanishes, then the nonlocality disappears and the ND problem converges to the classic diffusion problem. Under certain conditions, the exact solution to the ND problem may exhibit discontinuities, setting it apart from the classic diffusion problem. Since the DG method shows its great advantages in resolving problems with discontinuities in computational fluid dynamics over the past several decades, it is natural to adopt the DG method to compute the ND problems. Based on [Q. Du, L. Ju, J. Lu and X. Tian,Commun. Appl. Math. Comput. 2 (2020) 31–55], we develop the DG methods with different penalty terms, ensuring that the proposed DG methods have local counterparts as the horizon vanishes. This indicates the proposed methods will converge to the existing DG schemes as the horizon vanishes, which is crucial for achievingasymptotic compatibility. Rigorous proofs are provided to demonstrate the stability, error estimates, and asymptotic compatibility of the proposed DG schemes. To observe the effect of the nonlocal diffusion, we also consider the time-dependent convection–diffusion problems with nonlocal diffusion. We conduct several numerical experiments, including accuracy tests and Burgers’ equation with nonlocal diffusion, and various horizons are taken to show the good performance of the proposed algorithm and validate the theoretical findings.more » « less