skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A positivity-preserving adaptive-order finite-difference scheme for GRMHD
We present an adaptive-order positivity-preserving conservative finite-difference scheme that allows a high-order solution away from shocks and discontinuities while guaranteeing positivity and robustness at discontinuities. This is achieved by monitoring the relative power in the highest mode of the reconstructed polynomial and reducing the order when the polynomial series no longer converges. Our approach is similar to the multidimensional optimal order detection strategy, but differs in several ways. The approach isa prioriand so does not require retaking a time step. It can also readily be combined with positivity-preserving flux limiters that have gained significant traction in computational astrophysics and numerical relativity. This combination ultimately guarantees a physical solution both during reconstruction and time stepping. We demonstrate the capabilities of the method using a standard suite of very challenging 1d, 2d, and 3d general relativistic magnetohydrodynamics test problems.  more » « less
Award ID(s):
2208014 2209655 2308615 2309211 2209656 2011961
PAR ID:
10516766
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Classical and Quantum Gravity
Volume:
40
Issue:
24
ISSN:
0264-9381
Page Range / eLocation ID:
245014
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract High order schemes are known to be unstable in the presence of shock discontinuities or under‐resolved solution features, and have traditionally required additional filtering, limiting, or artificial viscosity to avoid solution blow up. Entropy stable schemes address this instability by ensuring that physically relevant solutions satisfy a semi‐discrete entropy inequality independently of discretization parameters. However, additional measures must be taken to ensure that solutions satisfy physical constraints such as positivity. In this work, we present a high order entropy stable discontinuous Galerkin (ESDG) method for the nonlinear shallow water equations (SWE) on two‐dimensional (2D) triangular meshes which preserves the positivity of the water heights. The scheme combines a low order positivity preserving method with a high order entropy stable method using convex limiting. This method is entropy stable and well‐balanced for fitted meshes with continuous bathymetry profiles. 
    more » « less
  2. Abstract In this work we introduce semi-implicit or implicit finite difference schemes for the continuity equation with a gradient flow structure. Examples of such equations include the linear Fokker–Planck equation and the Keller–Segel equations. The two proposed schemes are first-order accurate in time, explicitly solvable, and second-order and fourth-order accurate in space, which are obtained via finite difference implementation of the classical continuous finite element method. The fully discrete schemes are proved to be positivity preserving and energy dissipative: the second-order scheme can achieve so unconditionally while the fourth-order scheme only requires a mild time step and mesh size constraint. In particular, the fourth-order scheme is the first high order spatial discretization that can achieve both positivity and energy decay properties, which is suitable for long time simulation and to obtain accurate steady state solutions. 
    more » « less
  3. A class of nonlinear Fokker–Planck equations with nonlocal interactions may include many important cases, such as porous medium equations with external potentials and aggregation–diffusion models. The trajectory equation of the Fokker–Plank equation can be derived based on an energetic variational approach. A structure‐preserving numerical scheme that is mass conservative, energy stable, uniquely solvable, and positivity preserving at a theoretical level has also been designed in the previous work. Moreover, the numerical scheme is shown to satisfy the discrete energetic dissipation law and preserve steady states and has been observed to be second order accurate in space and first‐order accurate time in various numerical experiments. In this work, we give the rigorous convergence analysis for the highly nonlinear numerical scheme. A careful higher order asymptotic expansion is needed to handle the highly nonlinear nature of the trajectory equation. In addition, two step error estimates (a rough estimate and a refined estimate) are necessary in the convergence proof. Different from a standard error estimate, the rough estimate is performed to control the nonlinear term. A few numerical results are also presented to verify the optimal convergence order and the preservation of equilibria. 
    more » « less
  4. Abstract We propose a new fully‐discretized finite difference scheme for a quantum diffusion equation, in both one and two dimensions. This is the first fully‐discretized scheme with proven positivity‐preserving and energy stable properties using only standard finite difference discretization. The difficulty in proving the positivity‐preserving property lies in the lack of a maximum principle for fourth order partial differential equations. To overcome this difficulty, we reformulate the scheme as an optimization problem based on a variational structure and use the singular nature of the energy functional near the boundary values to exclude the possibility of non‐positive solutions. The scheme is also shown to be mass conservative and consistent. 
    more » « less
  5. In this paper, we design and analyze second order positive and free energy satisfying schemes for solving diffusion equations with interaction potentials. The semi-discrete scheme is shown to conserve mass, preserve solution positivity, and satisfy a discrete free energy dissipation law for nonuniform meshes. These properties for the fully-discrete scheme (first order in time) remain preserved without a strict restriction on time steps. For the fully second order (in both time and space) scheme, we use a local scaling limiter to restore solution positivity when necessary. It is proved that such limiter does not destroy the second order accuracy. In addition, these schemes are easy to implement, and efficient in simulations over long time. Both one and two dimensional numerical examples are presented to demonstrate the performance of these schemes. 
    more » « less