skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: The Giant Accreting Protoplanet Survey (GAPlanetS): Optimization Techniques for Robust Detections of Protoplanets
Abstract High-contrast imaging has afforded astronomers the opportunity to study light directly emitted by adolescent (tens of megayears) and “proto” (<10 Myr) planets still undergoing formation. Direct detection of these planets is enabled by empirical point-spread function (PSF) modeling and removal algorithms. The computational intensity of such algorithms, as well as their multiplicity of tunable input parameters, has led to the prevalence of ad hoc optimization approaches to high-contrast imaging results. In this work, we present a new, systematic approach to optimization vetted using data of the high-contrast stellar companion HD 142527 B from the Magellan Adaptive Optics Giant Accreting Protoplanet Survey (GAPlanetS). More specifically, we present a grid search technique designed to explore three influential parameters of the PSF subtraction algorithmpyKLIP: annuli, movement, and KL modes. We consider multiple metrics for postprocessed image quality in order to optimally recover at Hα(656 nm) synthetic planets injected into contemporaneous continuum (643 nm) images. These metrics include peak (single-pixel) signal-to-noise ratio (S/N), average (multipixel average) S/N, 5σcontrast, and false-positive fraction. We apply continuum-optimized KLIP reduction parameters to six Hαdirect detections of the low-mass stellar companion HD 142527 B and recover the companion at a range of separations. Relative to a single-informed, nonoptimized set of KLIP parameters applied to all data sets uniformly, our multimetric grid search optimization led to improvements in companion S/N of up to 1.2σ, with an average improvement of 0.6σ. Since many direct imaging detections lie close to the canonical 5σthreshold, even such modest improvements may result in higher yields in future imaging surveys.  more » « less
Award ID(s):
2009816
PAR ID:
10391779
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astronomical Journal
Volume:
165
Issue:
2
ISSN:
0004-6256
Format(s):
Medium: X Size: Article No. 57
Size(s):
Article No. 57
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Companions embedded in the cavities of transitional circumstellar disks have been observed to exhibit excess luminosity at Hα, an indication that they are actively accreting. We report 5 yr (2013–2018) of monitoring of the position and Hαexcess luminosity of the embedded, accreting low-mass stellar companion HD 142527 B from the MagAO/VisAO instrument. We usepyklip, a Python implementation of the Karhunen–Loeve Image Processing algorithm, to detect the companion. Usingpyklipforward modeling, we constrain the relative astrometry to 1–2 mas precision and achieve sufficient photometric precision (±0.2 mag, 3% error) to detect changes in the Hαcontrast of the companion over time. In order to accurately determine the relative astrometry of the companion, we conduct an astrometric calibration of the MagAO/VisAO camera against 20 yr of Keck/NIRC2 images of the Trapezium cluster. We demonstrate agreement of our VisAO astrometry with other published positions for HD 142527 B, and useorbitize!to generate a posterior distribution of orbits fit to the relative astrometry of HD 142527 B. Our data suggest that the companion is close to periastron passage, on an orbit significantly misaligned with respect to both the wide circumbinary disk and the recently observed inner disk encircling HD 142527 A. We translate observed Hαcontrasts for HD 142527 B into mass accretion rate estimates on the order of 4–9 × 10−10Myr−1. Photometric variation in the Hαexcess of the companion suggests that the accretion rate onto the companion is variable. This work represents a significant step toward observing accretion-driven variability onto protoplanets, such as PDS 70 b&c. 
    more » « less
  2. Abstract Accreting protoplanets are windows into planet formation processes, and high-contrast differential imaging is an effective way to identify them. We report results from the Giant Accreting Protoplanet Survey (GAPlanetS), which collected H α differential imagery of 14 transitional disk host stars with the Magellan Adaptive Optics System. To address the twin challenges of morphological complexity and point-spread function instability, GAPlanetS required novel approaches for frame selection and optimization of the Karhounen–Loéve Image Processing algorithm pyKLIP . We detect one new candidate, CS Cha “c,” at a separation of 68 mas and a modest Δmag of 2.3. We recover the HD 142527 B and HD 100453 B accreting stellar companions in several epochs, and the protoplanet PDS 70 c in 2017 imagery, extending its astrometric record by nine months. Though we cannot rule out scattered light structure, we also recover LkCa 15 “b,” at H α ; its presence inside the disk cavity, absence in Continuum imagery, and consistency with a forward-modeled point source suggest that it remains a viable protoplanet candidate. Through targeted optimization, we tentatively recover PDS 70 c at two additional epochs and PDS 70 b in one epoch. Despite numerous previously reported companion candidates around GAplanetS targets, we recover no additional point sources. Our moderate H α contrasts do not preclude most protoplanets, and we report limiting H α contrasts at unrecovered candidate locations. We find an overall detection rate of ∼36 − 22 + 26 % , considerably higher than most direct imaging surveys, speaking to both GAPlanetS’s highly targeted nature and the promise of H α differential imaging for protoplanet identification. 
    more » « less
  3. Abstract We present Super-RDI, a unique framework for the application of reference star differential imaging (RDI) to Keck/NIRC2 high-contrast imaging observations with the vortex coronagraph. Super-RDI combines frame selection and signal-to-noise ratio (S/N) optimization techniques with a large multiyear reference point-spread function (PSF) library to achieve optimal PSF subtraction at small angular separations. We compile an ∼7000 frame reference PSF library based on a set of 288 new Keck/NIRC2 L sequences of 237 unique targets acquired between 2015 and 2019 as part of two planet-search programs designed for RDI, one focusing on nearby young M dwarfs and the other targeting members of the Taurus star-forming region. For our data set, synthetic companion injection-recovery tests reveal that frame selection with the mean-squared error metric combined with Karhunen–Loève Image-Processing-based PSF subtraction using 1000–3000 frames and ≲500 principal components yields the highest average S/N for injected synthetic companions. We uniformly reduce targets in the young M-star survey with both Super-RDI and angular differential imaging (ADI). For the typical parallactic angle rotation of our data set (∼10°), Super-RDI performs better than a widely used implementation of ADI-based PSF subtraction at separations ≲0.″4 (≈5λ/D), gaining an average of 0.25 mag in contrast at 0.″25 and 0.4 mag in contrast at 0.″15. This represents a performance improvement in separation space over RDI with single-night reference star observations (∼100 frame PSF libraries) applied to a similar Keck/NIRC2 data set in previous work. We recover two known brown dwarf companions and provide detection limits for 155 targets in the young M-star survey. Our results demonstrate that increasing the PSF library size with careful selection of reference frames can improve the performance of RDI with the Keck/NIRC2 vortex coronagraph in L
    more » « less
  4. Abstract Stellar radial-velocity (RV) jitter due to surface activity may bias the RV semiamplitude and mass of rocky planets. The amplitude of the jitter may be estimated from the uncertainty in the rotation period, allowing the mass to be more accurately obtained. We find candidate rotation periods for 17 out of 35 TESS Objects of Interest (TOI) hosting <3Rplanets as part of the Magellan-TESS survey, which is the first-ever statistically robust study of exoplanet masses and radii across the photoevaporation gap. Seven periods are ≥3σdetections, two are ≥1.5σ, and eight show plausible variability, but the periods remain unconfirmed. The other 18 TOIs are nondetections. Candidate rotators include the host stars of the confirmed planets L 168-9 b, the HD 21749 system, LTT 1445 A b, TOI 1062 b, and the L 98-59 system. Thirteen candidates have no counterpart in the 1000 TOI rotation catalog of Canto Martins et al. We find periods for G3–M3 dwarfs using combined light curves from TESS and the Evryscope all-sky array of small telescopes, sometimes with longer periods than would be possible with TESS alone. Secure periods range from 1.4 to 26 days with Evryscope-measured photometric amplitudes as small as 2.1 mmag in g . We also apply Monte Carlo sampling and a Gaussian process stellar activity model fromexoplanetto the TESS light curves of six TOIs to confirm the Evryscope periods. 
    more » « less
  5. Abstract We present Keck Cosmic Web Imager integral-field unit observations around extended Lyαhalos of 27 typical star-forming galaxies with redshifts 2.0 <z< 3.2 drawn from the MOSFIRE Deep Evolution Field survey. We examine the average Lyαsurface brightness profiles in bins of star formation rate (SFR), stellar mass (M*), age, stellar continuum reddening, SFR surface density (ΣSFR), and ΣSFRnormalized by stellar mass (ΣsSFR). The scale lengths of the halos correlate with stellar mass, age, and stellar continuum reddening and anticorrelate with SFR, ΣSFR, and ΣsSFR. These results are consistent with a scenario in which the down-the-barrel fraction of Lyαemission is modulated by the low-column-density channels in the interstellar medium, and in which the neutral gas covering fraction is related to the physical properties of the galaxies. Specifically, we find that this covering fraction increases with stellar mass, age, andE(B−V) and decreases with SFR, ΣSFR, and ΣsSFR. We also find that the resonantly scattered Lyαemission suffers greater attenuation than the (nonresonant) stellar continuum emission, and that the difference in attenuation increases with stellar mass, age, and stellar continuum reddening, and decreases with ΣsSFR. These results imply that more reddened galaxies have more dust in their circumgalactic medium. 
    more » « less