skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Giant Accreting Protoplanet Survey (GAPlanetS)—Results from a 6 yr Campaign to Image Accreting Protoplanets
Abstract Accreting protoplanets are windows into planet formation processes, and high-contrast differential imaging is an effective way to identify them. We report results from the Giant Accreting Protoplanet Survey (GAPlanetS), which collected H α differential imagery of 14 transitional disk host stars with the Magellan Adaptive Optics System. To address the twin challenges of morphological complexity and point-spread function instability, GAPlanetS required novel approaches for frame selection and optimization of the Karhounen–Loéve Image Processing algorithm pyKLIP . We detect one new candidate, CS Cha “c,” at a separation of 68 mas and a modest Δmag of 2.3. We recover the HD 142527 B and HD 100453 B accreting stellar companions in several epochs, and the protoplanet PDS 70 c in 2017 imagery, extending its astrometric record by nine months. Though we cannot rule out scattered light structure, we also recover LkCa 15 “b,” at H α ; its presence inside the disk cavity, absence in Continuum imagery, and consistency with a forward-modeled point source suggest that it remains a viable protoplanet candidate. Through targeted optimization, we tentatively recover PDS 70 c at two additional epochs and PDS 70 b in one epoch. Despite numerous previously reported companion candidates around GAplanetS targets, we recover no additional point sources. Our moderate H α contrasts do not preclude most protoplanets, and we report limiting H α contrasts at unrecovered candidate locations. We find an overall detection rate of ∼36 − 22 + 26 % , considerably higher than most direct imaging surveys, speaking to both GAPlanetS’s highly targeted nature and the promise of H α differential imaging for protoplanet identification.  more » « less
Award ID(s):
2009816
PAR ID:
10462235
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; « less
Date Published:
Journal Name:
The Astronomical Journal
Volume:
165
Issue:
6
ISSN:
0004-6256
Page Range / eLocation ID:
225
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract 2MASS J16120668–3010270 (hereafter 2MJ1612) is a young M0 star that hosts a protoplanetary disk in the Upper Scorpius star-forming region. Recent Atacama Large Millimeter/submillimeter Array (ALMA) observations of 2MJ1612 show a mildly inclined disk (i = 37°) with a large dust-depleted gap (Rcav ≈ 0 . 4 or 53 au). We present high-contrast Hαobservations from MagAO-X on the 6.5 m Magellan telescope and new high-resolution submillimeter dust continuum observations with ALMA of 2MJ1612. On both 2025 April 13 and 16, we recovered a point source with Hαexcess with a signal-to-noise ratio ≳5 within the disk gap in our MagAO-X angular and spectral differential images at a separation of 141.96 ± 2.10 mas (23.45 ± 0.29 au deprojected) from the star and a position angle ​​​​​of 159 . ° 00 ± 0 . ° 55. Furthermore, this Hαsource is within close proximity to aK-band point source in the SPHERE/IRDIS observation taken on 2023 July 21. The astrometric offset between theKband and Hαsource can be explained by orbital motion of a bound companion. Thus, our observations can be best explained by the discovery of an accreting protoplanet, 2MJ1612 b, with an estimated mass of 4MJupand a Hαline flux ranging from (29.7 ± 7.5) × 10−16erg s cm2to (8.2 ± 3.4) × 10−16erg s cm2. 2MJ1612 b is likely the third example of an accreting Hαprotoplanet responsible for carving the gap in its host disk, joining PDS 70 b and c. Further study is necessary to confirm and characterize this protoplanet candidate and to identify any additional protoplanets that may also play a role in shaping the gap. 
    more » « less
  2. Abstract Companions embedded in the cavities of transitional circumstellar disks have been observed to exhibit excess luminosity at Hα, an indication that they are actively accreting. We report 5 yr (2013–2018) of monitoring of the position and Hαexcess luminosity of the embedded, accreting low-mass stellar companion HD 142527 B from the MagAO/VisAO instrument. We usepyklip, a Python implementation of the Karhunen–Loeve Image Processing algorithm, to detect the companion. Usingpyklipforward modeling, we constrain the relative astrometry to 1–2 mas precision and achieve sufficient photometric precision (±0.2 mag, 3% error) to detect changes in the Hαcontrast of the companion over time. In order to accurately determine the relative astrometry of the companion, we conduct an astrometric calibration of the MagAO/VisAO camera against 20 yr of Keck/NIRC2 images of the Trapezium cluster. We demonstrate agreement of our VisAO astrometry with other published positions for HD 142527 B, and useorbitize!to generate a posterior distribution of orbits fit to the relative astrometry of HD 142527 B. Our data suggest that the companion is close to periastron passage, on an orbit significantly misaligned with respect to both the wide circumbinary disk and the recently observed inner disk encircling HD 142527 A. We translate observed Hαcontrasts for HD 142527 B into mass accretion rate estimates on the order of 4–9 × 10−10Myr−1. Photometric variation in the Hαexcess of the companion suggests that the accretion rate onto the companion is variable. This work represents a significant step toward observing accretion-driven variability onto protoplanets, such as PDS 70 b&c. 
    more » « less
  3. Abstract We present 3 yr of high-contrast imaging of the PDS 70 b and c accreting protoplanets with the new extreme AO system MagAO-X as part of the MaxProtoPlanetS survey of Hαprotoplanets. In 2023 and 2024, our sharp (25–27 mas FWHM), well-AO-corrected (20%–26% Strehl), deep (2–3.6 hr) images detected compact (r∼ 30 mas;r∼ 3 au) circumplanetary disks (CPDs) surrounding both protoplanets. Starlight scattering off the front edge of these dusty CPDs is the likely source of the bright compact continuum light detected within ∼30 mas of both planets in our simultaneously obtained continuum 668 nm filter images. After subtraction of contaminating continuum and point-spread function residuals withpyKLIPangular differential imaging and spectral differential imaging, we obtained high-contrast ASDI Hαimages of both planets in 2022, 2023, and 2024. We find the Hαline flux of planet b fell by (8.1 ± 1.6) × 10−16erg s−1cm−2, a factor of 4.6 drop in flux from 2022 to 2023. In 2024 March, planet b continued to be faint with just a slight 1.6× rise to an Hαline flux of (3.64 ± 0.87) × 10−16erg s−1cm−2. For c, we measure a significant increase of (2.74 ± 0.51) × 10−16erg s−1cm−2from 2023 to 2024, which is a factor of 2.3 increase. So both protoplanets have recently experienced significant Hαvariability with ∼1 yr sampling. In 2024, planet c is brighter than b: as c is brightening and b generally fading. We also tentatively detect one new point source “CC3” inside the inner disk (∼49 mas; at PA ∼ 295°; 2024) with orbital motion roughly consistent with a ∼5.6 au orbit. 
    more » « less
  4. Abstract High-contrast imaging has afforded astronomers the opportunity to study light directly emitted by adolescent (tens of megayears) and “proto” (<10 Myr) planets still undergoing formation. Direct detection of these planets is enabled by empirical point-spread function (PSF) modeling and removal algorithms. The computational intensity of such algorithms, as well as their multiplicity of tunable input parameters, has led to the prevalence of ad hoc optimization approaches to high-contrast imaging results. In this work, we present a new, systematic approach to optimization vetted using data of the high-contrast stellar companion HD 142527 B from the Magellan Adaptive Optics Giant Accreting Protoplanet Survey (GAPlanetS). More specifically, we present a grid search technique designed to explore three influential parameters of the PSF subtraction algorithmpyKLIP: annuli, movement, and KL modes. We consider multiple metrics for postprocessed image quality in order to optimally recover at Hα(656 nm) synthetic planets injected into contemporaneous continuum (643 nm) images. These metrics include peak (single-pixel) signal-to-noise ratio (S/N), average (multipixel average) S/N, 5σcontrast, and false-positive fraction. We apply continuum-optimized KLIP reduction parameters to six Hαdirect detections of the low-mass stellar companion HD 142527 B and recover the companion at a range of separations. Relative to a single-informed, nonoptimized set of KLIP parameters applied to all data sets uniformly, our multimetric grid search optimization led to improvements in companion S/N of up to 1.2σ, with an average improvement of 0.6σ. Since many direct imaging detections lie close to the canonical 5σthreshold, even such modest improvements may result in higher yields in future imaging surveys. 
    more » « less
  5. ABSTRACT Many dozens of circumstellar discs show signatures of sculpting by planets. To help find these protoplanets by direct imaging, we compute their broadband spectral energy distributions, which overlap with the JWST and ALMA (Atacama Large Millimeter Array) passbands. We consider how circumplanetary spherical envelopes and circumplanetary discs are heated by accretion and irradiation. Searches with JWST’s NIRCam (Near-Infrared Camera) and the blue portion of MIRI (Mid-Infrared Instrument) are most promising since $$\sim$$300–1000 K protoplanets outshine their $$\sim$$20–50 K circumstellar environs at wavelengths of $$\sim$$2–10 $$\mu$$m. Detection is easier if circumplanetary dust settles into discs (more likely for more massive planets) or is less abundant per unit mass gas (because of grain growth or aerodynamic filtration). At wavelengths longer than 20 $$\mu$$m, circumplanetary material is difficult to see against the circumstellar disc’s surface layers that directly absorb starlight and reprocess it to the far-infrared. Such contaminating circumstellar emission can be serious even within the evacuated gaps observed by ALMA. Only in strongly depleted regions, like the cavity of the transitional disc PDS 70 where two protoplanets have been confirmed, may long-wavelength windows open for protoplanet study. We compile a list of candidate protoplanets and identify those with potentially the highest accretion luminosities, all peaking in the near-infrared. 
    more » « less