skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Violence Detection using 3D Convolutional Neural Networks
Accurate detection of abnormal behavior can help improve public safety. In this work, a 3D convolutional neural network (CNN) is implemented to detect violence captured by surveillance cameras. A comprehensive study of model hyper-parameter tuning is addressed to show competitive violence detection results using a general action recognition CNN without modifying the original architecture. Experimental results on three publicly available benchmark datasets show that the proposed method outperforms other sophisticated techniques designed specifically to detect violence in videos. Our analysis further indicates that reasonable network parameter adjustments can be an effective mechanism to guide the design of computer vision models in abnormal human behavior detection.  more » « less
Award ID(s):
1952102
PAR ID:
10392017
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IEEE International Conference on Advanced Video and Signal Based Surveillance
ISSN:
2643-6213
Page Range / eLocation ID:
8 pages
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The science DMZ is a specialized network model developed to guarantee secure and efficient transfer of data for large-scale distributed research. To enable a high level of performance, the Science DMZ includes dedicated data transfer nodes (DTNs). Protecting these DTNs is crucial to maintaining the overall security of the network and the data, and insider attacks are a major threat. Although some limited network intrusion detection systems (NIDS) are deployed to monitor DTNs, this alone is not sufficient to detect insider threats. Monitoring for abnormal system behavior, such as unusual sequences of system calls, is one way to detect insider threats. However, the relatively predictable behavior of the DTN suggests that we can also detect unusual activity through monitoring system performance, such as CPU and disk usage, along with network activity. In this paper, we introduce a potential insider attack scenario, and show how readily available system performance metrics can be employed to detect data tampering within DTNs, using DBSCAN clustering to actively monitor for unexpected behavior. 
    more » « less
  2. Attack detection problems in industrial control systems (ICSs) are commonly known as a network traffic monitoring scheme for detecting abnormal activities. However, a network-based intrusion detection system can be deceived by attackers that imitate the system’s normal activity. In this work, we proposed a novel solution to this problem based on measurement data in the supervisory control and data acquisition (SCADA) system. The proposed approach is called measurement intrusion detection system (MIDS), which enables the system to detect any abnormal activity in the system even if the attacker tries to conceal it in the system’s control layer. A supervised machine learning model is generated to classify normal and abnormal activities in an ICS to evaluate the MIDS performance. A hardware-in-the-loop (HIL) testbed is developed to simulate the power generation units and exploit the attack dataset. In the proposed approach, we applied several machine learning models on the dataset, which show remarkable performances in detecting the dataset’s anomalies, especially stealthy attacks. The results show that the random forest is performing better than other classifier algorithms in detecting anomalies based on measured data in the testbed. 
    more » « less
  3. Given a road network and a set of trajectory data, the anomalous behavior detection (ABD) problem is to identify drivers that show significant directional deviations, hard-brakings, and accelerations in their trips. The ABD problem is important in many societal applications, including Mild Cognitive Impairment (MCI) detection and safe route recommendations for older drivers. The ABD problem is computationally challenging due to the large size of temporally-detailed trajectories dataset. In this paper, we propose an Edge-Attributed Matrix that can represent the key properties of temporally-detailed trajectory datasets and identify abnormal driving behaviors. Experiments using real-world datasets demonstrated that our approach identifies abnormal driving behaviors. 
    more » « less
  4. null (Ed.)
    Bacteria identification can be a time-consuming process. Machine learning algorithms that use deep convolutional neural networks (CNNs) provide a promising alternative. Here, we present a deep learning based approach paired with Raman spectroscopy to rapidly and accurately detect the identity of a bacteria class. We propose a simple 4-layer CNN architecture and use a 30-class bacteria isolate dataset for training and testing. We achieve an identification accuracy of around 86% with identification speeds close to real-time. This optical/biological detection method is promising for applications in the detection of microbes in liquid biopsies and concentrated environmental liquid samples, where fast and accurate detection is crucial. This study uses a recently published dataset of Raman spectra from bacteria samples and an improved CNN model built with TensorFlow. Results show improved identification accuracy and reduced network complexity. 
    more » « less
  5. Hybrid traffic which involves both autonomous and human-driven vehicles would be the norm of the autonomous vehicles’ practice for a while. On the one hand, unlike autonomous vehicles, human-driven vehicles could exhibit sudden abnormal behaviors such as unpredictably switching to dangerous driving modes – putting its neighboring vehicles under risks; such undesired mode switching could arise from numbers of human driver factors, including fatigue, drunkenness, distraction, aggressiveness, etc. On the other hand, modern vehicle-to-vehicle (V2V) communication technologies enable the autonomous vehicles to efficiently and reliably share the scarce run-time information with each other [1]. In this paper, we propose, to the best of our knowledge, the first efficient algorithm that can (1) significantly improve trajectory prediction by effectively fusing the run-time information shared by surrounding autonomous vehicles, and can (2) accurately and quickly detect abnormal human driving mode switches or abnormal driving behavior with formal assurance without hurting human drivers’ privacy. To validate our proposed algorithm, we first evaluate our proposed trajectory predictor on NGSIM and Argoverse datasets and show that our proposed predictor outperforms the baseline methods. Then through extensive experiments on SUMO simulator, we show that our proposed algorithm has great detection performance in both highway and urban traffic. The best performance achieves detection rate of\(97.3\% \), average detection delay of 1.2s, and 0 false alarm. 
    more » « less