skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Deposition of Horizontally Stacked Zn Crystals on Single Layer 1T‐VSe 2 for Dendrite‐Free Zn Metal Anodes
Award ID(s):
2005250
PAR ID:
10392226
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Advanced Energy Materials
Volume:
12
Issue:
47
ISSN:
1614-6832
Page Range / eLocation ID:
2202983
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The zinc-ion battery (ZIB) has been a system of particular interest in the research community as a possible alternative to lithium-ion batteries (LIB), and much work has been devoted to finding a suitable host material. In this article, monoclinic V 2 (PO 4 ) 3 is investigated as a host material for reversible insertion of Zn 2+ . Initial chemical assessment via a facile microwave-assisted chemical insertion method indicates the possibility of Zn 2+ insertion into the host. Electrochemical assessment, however, exhibits a significant capacity fade. In-depth analysis on the average and local structure of Li 3 V 2 (PO 4 ) 3 , the empty host V 2 (PO 4 ) 3 , and the Zn-inserted V 2 (PO 4 ) 3 reveals that heavy distortion is induced upon Zn 2+ insertion into the V 2 (PO 4 ) 3 framework, which is believed to be a result of a strong host–guest interaction jeopardizing the structural integrity. This is further supported by the dissolution of most of the material during the chemical oxidation of the Zn-inserted V 2 (PO 4 ) 3 . The underlying structural inadequacy poses difficulties for monoclinic V 2 (PO 4 ) 3 to be a viable reversible host for Zn-ion batteries. This work suggests that not only the electrostatic repulsions of multivalent ions in a structure during diffusion, but also the structural stability of the host upon insertion of multivalent ions, must be considered for a better design of suitable host materials for multivalent-ion batteries. 
    more » « less
  2. Two new compounds, Zn2FeSbO6 and Zn2MnSbO6, have been synthesized under high-pressure and high-temperature conditions. The synthesis, single-crystal and powder X-ray diffraction, X-ray absorption near-edge spectroscopy (XANES), optical second harmonic generation (SHG), and magnetic and heat capacity measurements were carried out for both compounds and are described. The lattice parameters are a = 5.17754(6) Å and c = 13.80045(16) Å for Zn2FeSbO6 and a = 5.1889(10) Å and c = 14.0418(3) Å for Zn2MnSbO6. Single-crystal X-ray diffraction analyses indicate that Zn2FeSbO6 consists of a cocrystal of superimposed Ni3TeO6 (NTO) and ordered ilmenite (OIL) components with a ratio of approximately 2:1 and Zn2MnSbO6 contains two nearly identical, but noncrystallographically related, OIL components in a ratio of approximately 6:1. 
    more » « less
  3. ZnO naoparticles (NPs) with a Zn-phosphate shell can modulate the routes of Zn root uptake, translocation and storage mechanisms compared to ZnO NPs. Applying ZnO NPs to roots provides much greater uptake into plants than for foliar application. 
    more » « less