Abstract Let$$(h_I)$$ denote the standard Haar system on [0, 1], indexed by$$I\in \mathcal {D}$$ , the set of dyadic intervals and$$h_I\otimes h_J$$ denote the tensor product$$(s,t)\mapsto h_I(s) h_J(t)$$ ,$$I,J\in \mathcal {D}$$ . We consider a class of two-parameter function spaces which are completions of the linear span$$\mathcal {V}(\delta ^2)$$ of$$h_I\otimes h_J$$ ,$$I,J\in \mathcal {D}$$ . This class contains all the spaces of the formX(Y), whereXandYare either the Lebesgue spaces$$L^p[0,1]$$ or the Hardy spaces$$H^p[0,1]$$ ,$$1\le p < \infty $$ . We say that$$D:X(Y)\rightarrow X(Y)$$ is a Haar multiplier if$$D(h_I\otimes h_J) = d_{I,J} h_I\otimes h_J$$ , where$$d_{I,J}\in \mathbb {R}$$ , and ask which more elementary operators factor throughD. A decisive role is played by theCapon projection$$\mathcal {C}:\mathcal {V}(\delta ^2)\rightarrow \mathcal {V}(\delta ^2)$$ given by$$\mathcal {C} h_I\otimes h_J = h_I\otimes h_J$$ if$$|I|\le |J|$$ , and$$\mathcal {C} h_I\otimes h_J = 0$$ if$$|I| > |J|$$ , as our main result highlights: Given any bounded Haar multiplier$$D:X(Y)\rightarrow X(Y)$$ , there exist$$\lambda ,\mu \in \mathbb {R}$$ such that$$\begin{aligned} \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C})\text { approximately 1-projectionally factors through }D, \end{aligned}$$ i.e., for all$$\eta > 0$$ , there exist bounded operatorsA, Bso thatABis the identity operator$${{\,\textrm{Id}\,}}$$ ,$$\Vert A\Vert \cdot \Vert B\Vert = 1$$ and$$\Vert \lambda \mathcal {C} + \mu ({{\,\textrm{Id}\,}}-\mathcal {C}) - ADB\Vert < \eta $$ . Additionally, if$$\mathcal {C}$$ is unbounded onX(Y), then$$\lambda = \mu $$ and then$${{\,\textrm{Id}\,}}$$ either factors throughDor$${{\,\textrm{Id}\,}}-D$$ .
more »
« less
On Pisier Type Theorems
Abstract For any integer$$h\geqslant 2$$ , a set of integers$$B=\{b_i\}_{i\in I}$$ is a$$B_h$$ -set if allh-sums$$b_{i_1}+\ldots +b_{i_h}$$ with$$i_1<\ldots are distinct. Answering a question of Alon and Erdős [2], for every$$h\geqslant 2$$ we construct a set of integersXwhich is not a union of finitely many$$B_h$$ -sets, yet any finite subset$$Y\subseteq X$$ contains an$$B_h$$ -setZwith$$|Z|\geqslant \varepsilon |Y|$$ , where$$\varepsilon :=\varepsilon (h)$$ . We also discuss questions related to a problem of Pisier about the existence of a setAwith similar properties when replacing$$B_h$$ -sets by the requirement that all finite sums$$\sum _{j\in J}b_j$$ are distinct.
more »
« less
- Award ID(s):
- 2300347
- PAR ID:
- 10584370
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Combinatorica
- Volume:
- 44
- Issue:
- 6
- ISSN:
- 0209-9683
- Page Range / eLocation ID:
- 1211 to 1232
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract LetXbe a compact normal complex space of dimensionnandLbe a holomorphic line bundle onX. Suppose that$$\Sigma =(\Sigma _1,\ldots ,\Sigma _\ell )$$ is an$$\ell $$ -tuple of distinct irreducible proper analytic subsets ofX,$$\tau =(\tau _1,\ldots ,\tau _\ell )$$ is an$$\ell $$ -tuple of positive real numbers, and let$$H^0_0(X,L^p)$$ be the space of holomorphic sections of$$L^p:=L^{\otimes p}$$ that vanish to order at least$$\tau _jp$$ along$$\Sigma _j$$ ,$$1\le j\le \ell $$ . If$$Y\subset X$$ is an irreducible analytic subset of dimensionm, we consider the space$$H^0_0 (X|Y, L^p)$$ of holomorphic sections of$$L^p|_Y$$ that extend to global holomorphic sections in$$H^0_0(X,L^p)$$ . Assuming that the triplet$$(L,\Sigma ,\tau )$$ is big in the sense that$$\dim H^0_0(X,L^p)\sim p^n$$ , we give a general condition onYto ensure that$$\dim H^0_0(X|Y,L^p)\sim p^m$$ . WhenLis endowed with a continuous Hermitian metric, we show that the Fubini-Study currents of the spaces$$H^0_0(X|Y,L^p)$$ converge to a certain equilibrium current onY. We apply this to the study of the equidistribution of zeros inYof random holomorphic sections in$$H^0_0(X|Y,L^p)$$ as$$p\rightarrow \infty $$ .more » « less
-
Abstract For a smooth projective varietyXover an algebraic number fieldka conjecture of Bloch and Beilinson predicts that the kernel of the Albanese map ofXis a torsion group. In this article we consider a product$$X=C_1\times \cdots \times C_d$$ of smooth projective curves and show that if the conjecture is true for any subproduct of two curves, then it is true forX. For a product$$X=C_1\times C_2$$ of two curves over$$\mathbb {Q} $$ with positive genus we construct many nontrivial examples that satisfy the weaker property that the image of the natural map$$J_1(\mathbb {Q})\otimes J_2(\mathbb {Q})\xrightarrow {\varepsilon }{{\,\textrm{CH}\,}}_0(C_1\times C_2)$$ is finite, where$$J_i$$ is the Jacobian variety of$$C_i$$ . Our constructions include many new examples of non-isogenous pairs of elliptic curves$$E_1, E_2$$ with positive rank, including the first known examples of rank greater than 1. Combining these constructions with our previous result, we obtain infinitely many nontrivial products$$X=C_1\times \cdots \times C_d$$ for which the analogous map$$\varepsilon $$ has finite image.more » « less
-
Abstract A classical parking function of lengthnis a list of positive integers$$(a_1, a_2, \ldots , a_n)$$ whose nondecreasing rearrangement$$b_1 \le b_2 \le \cdots \le b_n$$ satisfies$$b_i \le i$$ . The convex hull of all parking functions of lengthnis ann-dimensional polytope in$${\mathbb {R}}^n$$ , which we refer to as the classical parking function polytope. Its geometric properties have been explored in Amanbayeva and Wang (Enumer Combin Appl 2(2):Paper No. S2R10, 10, 2022) in response to a question posed by Stanley (Amer Math Mon 127(6):563–571, 2020). We generalize this family of polytopes by studying the geometric properties of the convex hull of$${\textbf{x}}$$ -parking functions for$${\textbf{x}}=(a,b,\dots ,b)$$ , which we refer to as$${\textbf{x}}$$ -parking function polytopes. We explore connections between these$${\textbf{x}}$$ -parking function polytopes, the Pitman–Stanley polytope, and the partial permutahedra of Heuer and Striker (SIAM J Discrete Math 36(4):2863–2888, 2022). In particular, we establish a closed-form expression for the volume of$${\textbf{x}}$$ -parking function polytopes. This allows us to answer a conjecture of Behrend et al. (2022) and also obtain a new closed-form expression for the volume of the convex hull of classical parking functions as a corollary.more » « less
-
Abstract We consider the problem of covering multiple submodular constraints. Given a finite ground setN, a weight function$$w: N \rightarrow \mathbb {R}_+$$ ,rmonotone submodular functions$$f_1,f_2,\ldots ,f_r$$ overNand requirements$$k_1,k_2,\ldots ,k_r$$ the goal is to find a minimum weight subset$$S \subseteq N$$ such that$$f_i(S) \ge k_i$$ for$$1 \le i \le r$$ . We refer to this problem asMulti-Submod-Coverand it was recently considered by Har-Peled and Jones (Few cuts meet many point sets. CoRR.arxiv:abs1808.03260Har-Peled and Jones 2018) who were motivated by an application in geometry. Even with$$r=1$$ Multi-Submod-Covergeneralizes the well-known Submodular Set Cover problem (Submod-SC), and it can also be easily reduced toSubmod-SC. A simple greedy algorithm gives an$$O(\log (kr))$$ approximation where$$k = \sum _i k_i$$ and this ratio cannot be improved in the general case. In this paper, motivated by several concrete applications, we consider two ways to improve upon the approximation given by the greedy algorithm. First, we give a bicriteria approximation algorithm forMulti-Submod-Coverthat covers each constraint to within a factor of$$(1-1/e-\varepsilon )$$ while incurring an approximation of$$O(\frac{1}{\epsilon }\log r)$$ in the cost. Second, we consider the special case when each$$f_i$$ is a obtained from a truncated coverage function and obtain an algorithm that generalizes previous work on partial set cover (Partial-SC), covering integer programs (CIPs) and multiple vertex cover constraints Bera et al. (Theoret Comput Sci 555:2–8 Bera et al. 2014). Both these algorithms are based on mathematical programming relaxations that avoid the limitations of the greedy algorithm. We demonstrate the implications of our algorithms and related ideas to several applications ranging from geometric covering problems to clustering with outliers. Our work highlights the utility of the high-level model and the lens of submodularity in addressing this class of covering problems.more » « less
An official website of the United States government

