Abstract If contextual values can play necessary and beneficial roles in scientific research, to what extent should science communicators be transparent about such values? This question is particularly pressing in contexts where there appears to be significant resistance among some non-experts to accept certain scientific claims or adopt science-based policies or recommendations. This paper examines whether value transparency can help promote non-experts’ warranted epistemic trust of experts. I argue that there is a prima facie case in favor of transparency because it can promote four conditions that are thought to be required for epistemic trustworthiness. I then consider three main arguments that transparency about values is likely to be ineffective in promoting such trust (and may undermine it). This analysis shows that while these arguments show that value transparency is not sufficient for promoting epistemic trust, they fail to show that rejecting value transparency as a norm for science communicators is more likely to promote warranted epistemic trust than a qualified norm of value transparency (along with other strategies). Finally, I endorse a tempered understanding of value transparency and consider what this might require in practice. 
                        more » 
                        « less   
                    
                            
                            How should we promote transient diversity in science?
                        
                    
    
            Abstract Diversity of practice is widely recognized as crucial to scientific progress. If all scientists perform the same tests in their research, they might miss important insights that other tests would yield. If all scientists adhere to the same theories, they might fail to explore other options which, in turn, might be superior. But the mechanisms that lead to this sort of diversity can also generate epistemic harms when scientific communities fail to reach swift consensus on successful theories. In this paper, we draw on extant literature using network models to investigate diversity in science. We evaluate different mechanisms from the modeling literature that can promote transient diversity of practice, keeping in mind ethical and practical constraints posed by real epistemic communities. We ask: what are the best ways to promote an appropriate amount of diversity of practice in scientific communities? 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1922424
- PAR ID:
- 10392288
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Synthese
- Volume:
- 201
- Issue:
- 2
- ISSN:
- 1573-0964
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Efforts to promote responsible conduct of research (RCR) should take into consideration how scientists already conceptualize the relationship between ethics and science. In this study, we investigated how scientists relate ethics and science by analyzing the values expressed in interviews with fifteen science faculty members at a large midwestern university. We identified the values the scientists appealed to when discussing research ethics, how explicitly they related their values to ethics, and the relationships between the values they appealed to. We found that the scientists in our study appealed to epistemic and ethical values with about the same frequency, and much more often than any other type of value. We also found that they explicitly associated epistemic values with ethical values. Participants were more likely to describe epistemic and ethical values as supporting each other, rather than trading off with each other. This suggests that many scientists already have a sophisticated understanding of the relationship between ethics and science, which may be an important resource for RCR training interventions.more » « less
- 
            null (Ed.)This article explores how scientists adapt to a changing climate. To do this, we bring examples from a case study of salmon habitat restorationists in the Columbia River Basin into conversation with concepts from previous work on change and stability in knowledge infrastructures and scientific practice. In order to adapt, ecological restorationists are increasingly relying on predictive modeling tools, as well as initiating broader changes in the interdisciplinary nature of the field of ecological restoration itself. We explore how the field of ecological restoration is shifting its conceptual gaze from restoring to past, historic baselines to anticipating a no-analog future and consider what this means in terms of understanding the adaptive capacity of knowledge infrastructures and epistemic communities more broadly. We argue that identifying how scientists themselves conceptualize drivers of change and respond to these changes is an important step in understanding what adaptive capacity in science might entail. We offer these examples as a provocation for thinking about “adaptive epistemologies” and how adaptation by scientists themselves can facilitate or hinder particular environmental or sociotechnical futures.more » « less
- 
            Societal Impact Statement It is increasingly common for plant scientists and urban planning and design professionals to collaborate on interdisciplinary teams that integrate scientific experiments into public and social urban spaces. However, neither the procedural ethics that govern scientific experimentation, nor the professional ethics of urban design and planning practice, fully account for the possible impacts of urban ecological experiments on local residents and communities. Scientists that participate in design and planning teams act as decision‐makers, and must expand their domain of ethical consideration accordingly. Conversely, practitioners who engage in ecological experiments take on the moral responsibilities inherent in generation of knowledge. To avoid potential harm to human and non‐human inhabitants of cities while maintaining scientific and professional integrity in research and practice, an integrated ethical framework is needed for urban ecological planning and design. SummaryWhile there are many ethical and procedural guidelines for scientists who wish to inform decision‐making and public policy, urban ecologists are increasingly embedded in planning and design teams to integrate scientific measurements and experiments into urban landscapes. These scientists are not just informing decision‐making – they are themselves acting as decision‐makers. As such, researchers take on additional moral obligations beyond scientific procedural ethics when designing and conducting ecological design and planning experiments. We describe the growing field of urban ecological design and planning and present a framework for expanding the ethical considerations of socioecological researchers and urban practitioners who collaborate on interdisciplinary teams. Drawing on existing ethical frameworks from a range of disciplines, we outline possible ways in which ecologists, social scientists, and practitioners should expand the traditional ethical considerations of their work to ensure that urban residents, communities, and non‐human entities are not harmed as researchers and practitioners carry out their individual obligations to clients, municipalities, and scientific practice. We present an integrated framework to aid in the development of ethical codes for research, practice, and education in integrated urban ecology, socioenvironmental sciences, and design and planning.more » « less
- 
            Abstract An essential aspect of scientific practice involves grappling with the generation of predictions, representations, interpretations, investigations, and communications related to scientific phenomena, all of which are inherently permeated with uncertainty. Transferring this practice from expert settings to the classroom is invaluable yet challenging. Teachers often perceive struggles as incidental, negative, and uncomfortable, assuming they stem from students' deficiencies in knowledge or understanding, which they feel compelled to promptly address to progress. While some empirical research has explored the role of scientific uncertainties in driving productive student struggle, few studies have explicitly examined or provided a framework to unpack scientific uncertainty as it manifests in the classroom, including the sources that lead to student struggle and how teachers can manage it effectively. In this position paper, we elucidate the importance of incorporating scientific uncertainties as pedagogical resources to foster student struggles through uncertainty from three perspectives: scientific literacy, student agency, and coherent trajectories of sensemaking. To develop a theoretical framework, we consider scientific uncertainty as a resource for productive struggle in the sensemaking process. We delve into two types (e.g., conceptual, epistemic), four sources (e.g., insufficiency, ambiguity, incoherence, conflict), and three desirability considerations (e.g., relevance, timing, complexity) of scientific uncertainties in student struggles to provide a theoretical foundation for understanding what students struggle with, why they struggle, and how scientific uncertainties can be effectively managed by teachers. With this framework, researchers and teachers can examine the (mis)alignments between uncertainty‐in‐design, uncertainty‐in‐practice, and uncertainty‐in‐reflection.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
