The V 1−x Mo x O 2 phase diagram has high structural and electronic complexity that is driven by strong, short-range correlations that compete with the long-range rutile crystal structure. The substitution regime near 50% Mo occupancy is no exception, but there has so far been no significant progress in determining the actual structure. Reported here is a combined study using single crystal X-ray diffraction, powder X-ray diffraction, and representational analysis to examine both the local and crystallographically averaged atomic structures simultaneously near x = 0.50. Between about x = 0.50 and 0.60, the average structure of V 1−x Mo x O 2 is the parent rutile phase, but the local symmetry is broken by atomic displacements that are best described using the orthorhombic subgroup Fmmm . This model is locally similar to the two-dimensionally ordered 2D-M2 phase recently reported in the compositional range 0.19 ≤ x ≤ 0.30, except the correlation length is much shorter in the 2D plane, and longer in the frustrated one, making it more isotropic. This work also extends the 2D-M2 phase regime up to x = 0.43, and suggests that the local- Fmmm phase observed here can be seen as the end result of the continued suppression of the 2D-M2 phase through enhanced geometric frustration between the intrinsic order parameters. This suggests that other doped-rutile phases with elusive structures may also be dominated by similar short-range correlations that are hidden in the diffuse scattering.
more »
« less
Epitaxial intergrowths and local oxide relaxations in natural bixbyite Fe 2−x Mn x O 3
The scattering pattern of a crystal obeys the symmetry of the crystal structure through the corresponding Laue group. This is usually also true for the diffuse scattering, containing information about disorder, but here a case is reported where the diffuse scattering is of lower symmetry than the parent crystal structure. The mineral bixbyite has been studied by X-ray and neutron scattering techniques since 1928 with some of the most recent studies characterizing the low-temperature transition to a magnetically disordered spin-glass state. However, bixbyite also exhibits structural disorder, and here single-crystal X-ray and neutron scattering is used to characterize the different modes of disorder present. One-dimensional rods of diffuse scattering are observed in the cubic mineral bixbyite, which break the expected symmetry of the scattering pattern. It is shown that this scattering arises from epitaxial intergrowths of the related mineral, braunite. The presence of this disorder mode is found to be directly observable as well-defined residuals in the average structure refined against the Bragg diffraction. An additional three-dimensional diffuse scattering component is observed in neutron scattering data, which is shown to originate from the substitutional disorder on the Fe/Mn sites. This occupational disorder gives rise to local relaxations of the oxide sublattice, and the pattern of oxide displacements can be rationalized based on crystal-field theory. The combined use of neutron and X-ray single-crystal scattering techniques highlights their great complementarity. In particular, the large sample requirements for neutron scattering experiments prove to be an obstacle in solving the intergrowth disorder due to several growth orientations, whereas for X-ray scattering the one-dimensional nature of the intergrowth disorder renders solving this a more tractable task. On the other hand, the oxide relaxations cannot be resolved using X-rays due to the low Mn/Fe contrast. By combining the two approaches both types of disorder have been characterized.
more »
« less
- Award ID(s):
- 1834750
- PAR ID:
- 10392716
- Date Published:
- Journal Name:
- IUCrJ
- Volume:
- 9
- Issue:
- 4
- ISSN:
- 2052-2525
- Page Range / eLocation ID:
- 523 to 532
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The correlation between lattice chemistry and cation migration in high‐entropy Li+conductors is not fully understood due to challenges in characterizing anion disorder. To address this issue, argyrodite family of Li+conductors, which enables structural engineering of the anion lattice, is investigated. Specifically, new argyrodites, Li5.3PS4.3Cl1.7−xBrx(0 ≤x≤ 1.7), with varying anion entropy are synthesized and X‐ray diffraction, neutron scattering, and multinuclear high‐resolution solid‐state nuclear magnetic resonance (NMR) are used to determine the resulting structures. Ion and lattice dynamics are determined using variable‐temperature multinuclear NMR relaxometry and maximum entropy method analysis of neutron scattering, aided by constrained ab initio molecular dynamics calculations. 15 atomic configurations of anion arrangements are identified, producing a wide range of local lattice dynamics. High entropy in the lattice structure, composition, and dynamics stabilize otherwise metastable Li‐deficient structures and flatten the energy landscape for cation migration. This resulted in the highest room‐temperature ionic conductivity of 26 mS cm−1and a low activation energy of 0.155 eV realized in Li5.3PS4.3Cl0.7Br, where anion disorder is maximized. This study sheds light on the complex structure–property relationships of high‐entropy superionic conductors, highlighting the significance of heterogeneity in lattice dynamics.more » « less
-
Cu2TSiS4 (T = Mn and Fe) polycrystalline and single-crystal materials were prepared with high-temperature solid-state and chemical vapor transport methods, respectively. The polar crystal structure (space group Pmn21) consists of chains of corner-sharing and distorted CuS4, Mn/FeS4, and SiS4 tetrahedra, which is confirmed by Rietveld refinement using neutron powder diffraction data, X-ray single-crystal refinement, electron diffraction, energy-dispersive X-ray spectroscopy, and second harmonic generation (SHG) techniques. Magnetic measurements indicate that both compounds order antiferromagnetically at 8 and 14 K, respectively, which is supported by the temperature-dependent (100–2 K) neutron powder diffraction data. Additional magnetic reflections observed at 2 K can be modeled by magnetic propagation vectors k = (1/2,0,1/2) and k = (1/2,1/2,1/2) for Cu2MnSiS4 and Cu2FeSiS4, respectively. The refined antiferromagnetic structure reveals that the Mn/Fe spins are canted away from the ac plane by about 14°, with the total magnetic moments of Mn and Fe being 4.1(1) and 2.9(1) μB, respectively. Both compounds exhibit an SHG response with relatively modest second-order nonlinear susceptibilities. Density functional theory calculations are used to describe the electronic band structures.more » « less
-
Mixed metal oxyhalides are an exciting class of photocatalysts, capable of the sustainable generation of fuels and remediation of pollutants with solar energy. Bismuth oxyhalides of the types Bi4MO8X (M = Nb and Ta; X = Cl and Br) and Bi2AO4X (A = most lanthanides; X = Cl, Br, and I) have an electronic structure that imparts photostability, as their valence band maxima (VBM) are composed of O 2p orbitals rather than X np orbitals that typify many other bismuth oxyhalides. Here, flux-based synthesis of intergrowth Bi4NbO8Cl–Bi2GdO4Cl is reported, testing the hypothesis that both intergrowth stoichiometry and M identity serve as levers toward tunable optoelectronic properties. X-ray scattering and atomically resolved electron microscopy verify intergrowth formation. Facile manipulation of the Bi4NbO8Cl-to-Bi2GdO4Cl ratio is achieved with the specific ratio influencing both the crystal and electronic structures of the intergrowths. This compositional flexibility and crystal structure engineering can be leveraged for photocatalytic applications, with comparisons to the previously reported Bi4TaO8Cl–Bi2GdO4Cl intergrowth revealing how subtle structural and compositional features can impact photocatalytic materials.more » « less
-
The phase transitions of a series of Co-doped Heusler alloys, Ni2Mn1−xCoxGa (0⩽x⩽0.2), were investigated experimentally using the magnetization measurements, x-ray diffraction, and calorimetric measurements up to their respective melting points. With increasing Co concentration, the structural transition temperatures, Curie temperatures, and melting points, were observed to increase, while the order–disorder transition temperatures decreased. Temperature-dependent x-ray diffraction experiments revealed two different crystal structures in the low-temperature martensite phase for different Co concentrations. However, above their respective structural transitions, both low-temperature crystal structures transformed into the L21 cubic structure. These findings enabled the construction of a complete magnetic and structural phase diagram for Ni2Mn1−xCoxGa, spanning from cryogenic temperatures to the melting points. The temperature-dependent XRD results revealed the abrupt changes in interatomic Mn–Mn distances, which validates the crucial role of Mn–Mn interatomic distance and the effect of the magnetic coupling competition in the structural stability between the martensite phase and austenite phase.more » « less
An official website of the United States government

