Horizon-scale observations of the jetted active galactic nucleus M87 are compared with simulations spanning a broad range of dissipation mechanisms and plasma content in three-dimensional general relativistic flows around spinning black holes. Observations of synchrotron radiation from radio to X-ray frequencies can be compared with simulations by adding prescriptions specifying the relativistic electron-plus-positron distribution function and associated radiative transfer coefficients. A suite of time-varying simulations with various spins, plasma magnetizations and turbulent heating and equipartition-based emission prescriptions (and piecewise combinations thereof) is chosen to represent distinct possibilities for the M87 jet/accretion flow/black hole system. Simulation jet morphology, polarization, and variation are then ‘observed’ and compared with real observations to infer the rules that govern the polarized emissivity. Our models support several possible spin/emission model/plasma composition combinations supplying the jet in M87, whose black hole shadow has been observed down to the photon ring at 230 GHz by the Event Horizon Telescope (EHT). Net linear polarization and circular polarization constraints favour magnetically arrested disc (MAD) models whereas resolved linear polarization favours standard and normal evolution (SANE) in our parameter space. We also show that some MAD cases dominated by intrinsic circular polarization have near-linear V/I dependence on un-paired electron or positron content while SANE polarization exhibits markedly greater positron-dependent Faraday effects – future probes of the SANE/MAD dichotomy and plasma content with the EHT. This is the second work in a series also applying the ‘observing’ simulations methodology to near-horizon regions of supermassive black holes in Sgr A* and 3C 279.
- NSF-PAR ID:
- 10393099
- Date Published:
- Journal Name:
- Galaxies
- Volume:
- 11
- Issue:
- 1
- ISSN:
- 2075-4434
- Page Range / eLocation ID:
- 5
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT -
Abstract The Event Horizon Telescope (EHT) has produced images of the plasma flow around the supermassive black holes in Sgr A* and M87* with a resolution comparable to the projected size of their event horizons. Observations with the next-generation Event Horizon Telescope (ngEHT) will have significantly improved Fourier plane coverage and will be conducted at multiple frequency bands (86, 230, and 345 GHz), each with a wide bandwidth. At these frequencies, both Sgr A* and M87* transition from optically thin to optically thick. Resolved spectral index maps in the near-horizon and jet-launching regions of these supermassive black hole sources can constrain properties of the emitting plasma that are degenerate in single-frequency images. In addition, combining information from data obtained at multiple frequencies is a powerful tool for interferometric image reconstruction, since gaps in spatial scales in single-frequency observations can be filled in with information from other frequencies. Here we present a new method of simultaneously reconstructing interferometric images at multiple frequencies along with their spectral index maps. The method is based on existing regularized maximum likelihood (RML) methods commonly used for EHT imaging and is implemented in the
eht-imaging Python software library. We show results of this method on simulated ngEHT data sets as well as on real data from the Very Long Baseline Array and Atacama Large Millimeter/submillimeter Array. These examples demonstrate that simultaneous RML multifrequency image reconstruction produces higher-quality and more scientifically useful results than is possible from combining independent image reconstructions at each frequency. -
The Event Horizon Telescope (EHT) has led to the first images of a supermassive black hole, revealing the central compact objects in the elliptical galaxy M87 and the Milky Way. Proposed upgrades to this array through the next-generation EHT (ngEHT) program would sharply improve the angular resolution, dynamic range, and temporal coverage of the existing EHT observations. These improvements will uniquely enable a wealth of transformative new discoveries related to black hole science, extending from event-horizon-scale studies of strong gravity to studies of explosive transients to the cosmological growth and influence of supermassive black holes. Here, we present the key science goals for the ngEHT and their associated instrument requirements, both of which have been formulated through a multi-year international effort involving hundreds of scientists worldwide.more » « less
-
Abstract With unprecedented angular resolution, the Event Horizon Telescope (EHT) has opened a new era of black hole studies. We have previously calculated the expected polarization images of M 87* with EHT observations in mind. There, we demonstrated that circular polarization (CP) images, as well as linear polarization (LP) maps, can convey quite useful information, such as the flow structure and magnetic field configuration around the black hole. In this paper, we make new predictions for the cases in which disk emission dominates over jet emission, bearing Sgr A* in mind. Here we set the proton-to-electron temperature ratio of the disk component to be Tp/Te ∼ 2 so as to suppress jet emission relative to emission from accretion flow. As a result, we obtain ring-like images and triple-forked images around the black hole for face-on and edge-on cases, respectively. We also find significant CP components in the images (≳10% in fraction), with both positive and negative signs, amplified through the Faraday conversion, not depending sensitively on the inclination angles. Furthermore, we find a “separatrix” in the CP images, across which the sign of CP is reversed and on which the LP flux is brightest, that can be attributed to the helical magnetic field structure in the disk. These results indicate that future full polarization EHT images are a quite useful tracer of the magnetic field structure. We also discuss to what extent we will be able to extract information regarding magnetic field configurations under the scattering in the interstellar plasma, in future EHT polarimetric observations of Sgr A*.more » « less
-
ABSTRACT We introduce a new library of 535 194 model images of the supermassive black holes and Event Horizon Telescope (EHT) targets Sgr A* and M87*, computed by performing general relativistic radiative transfer calculations on general relativistic magnetohydrodynamics simulations. Then to infer underlying black hole and accretion flow parameters (spin, inclination, ion-to-electron temperature ratio, and magnetic field polarity), we train a random forest machine learning model on various hand-picked polarimetric observables computed from each image. Our random forest is capable of making meaningful predictions of spin, inclination, and the ion-to-electron temperature ratio, but has more difficulty inferring magnetic field polarity. To disentangle how physical parameters are encoded in different observables, we apply two different metrics to rank the importance of each observable at inferring each physical parameter. Details of the spatially resolved linear polarization morphology stand out as important discriminators between models. Bearing in mind the theoretical limitations and incompleteness of our image library, for the real M87* data, our machinery favours high-spin retrograde models with large ion-to-electron temperature ratios. Due to the time-variable nature of these targets, repeated polarimetric imaging will further improve model inference as the EHT and next-generation (EHT) continue to develop and monitor their targets.