skip to main content


Title: iDINGO—integrative differential network analysis in genomics with Shiny application
Abstract Motivation

Differential network analysis is an important way to understand network rewiring involved in disease progression and development. Building differential networks from multiple ‘omics data provides insight into the holistic differences of the interactive system under different patient-specific groups. DINGO was developed to infer group-specific dependencies and build differential networks. However, DINGO and other existing tools are limited to analyze data arising from a single platform, and modeling each of the multiple ‘omics data independently does not account for the hierarchical structure of the data.

Results

We developed the iDINGO R package to estimate group-specific dependencies and make inferences on the integrative differential networks, considering the biological hierarchy among the platforms. A Shiny application has also been developed to facilitate easier analysis and visualization of results, including integrative differential networks and hub gene identification across platforms.

Availability and implementation

R package is available on CRAN (https://cran.r-project.org/web/packages/iDINGO) and Shiny application at https://github.com/MinJinHa/iDINGO.

Supplementary information

Supplementary data are available at Bioinformatics online.

 
more » « less
NSF-PAR ID:
10393377
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics
Volume:
34
Issue:
7
ISSN:
1367-4803
Page Range / eLocation ID:
p. 1243-1245
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    Differential correlation networks are increasingly used to delineate changes in interactions among biomolecules. They characterize differences between omics networks under two different conditions, and can be used to delineate mechanisms of disease initiation and progression.

    Results

    We present a new R package, , that facilitates the estimation and visualization of differential correlation networks using multiple correlation measures and inference methods. The software is implemented in , and , and is available athttps://github.com/sqyu/CorDiffViz. Visualization has been tested for the Chrome and Firefox web browsers. A demo is available athttps://diffcornet.github.io/CorDiffViz/demo.html.

    Conclusions

    Our software offers considerable flexibility by allowing the user to interact with the visualization and choose from different estimation methods and visualizations. It also allows the user to easily toggle between correlation networks for samples under one condition and differential correlations between samples under two conditions. Moreover, the software facilitates integrative analysis of cross-correlation networks between two omics data sets.

     
    more » « less
  2. Abstract Motivation

    This article introduces Vivarium—software born of the idea that it should be as easy as possible for computational biologists to define any imaginable mechanistic model, combine it with existing models and execute them together as an integrated multiscale model. Integrative multiscale modeling confronts the complexity of biology by combining heterogeneous datasets and diverse modeling strategies into unified representations. These integrated models are then run to simulate how the hypothesized mechanisms operate as a whole. But building such models has been a labor-intensive process that requires many contributors, and they are still primarily developed on a case-by-case basis with each project starting anew. New software tools that streamline the integrative modeling effort and facilitate collaboration are therefore essential for future computational biologists.

    Results

    Vivarium is a software tool for building integrative multiscale models. It provides an interface that makes individual models into modules that can be wired together in large composite models, parallelized across multiple CPUs and run with Vivarium’s discrete-event simulation engine. Vivarium’s utility is demonstrated by building composite models that combine several modeling frameworks: agent-based models, ordinary differential equations, stochastic reaction systems, constraint-based models, solid-body physics and spatial diffusion. This demonstrates just the beginning of what is possible—Vivarium will be able to support future efforts that integrate many more types of models and at many more biological scales.

    Availability and implementation

    The specific models, simulation pipelines and notebooks developed for this article are all available at the vivarium-notebooks repository: https://github.com/vivarium-collective/vivarium-notebooks. Vivarium-core is available at https://github.com/vivarium-collective/vivarium-core, and has been released on Python Package Index. The Vivarium Collective (https://vivarium-collective.github.io) is a repository of freely available Vivarium processes and composites, including the processes used in Section 3. Supplementary Materials provide with an extensive methodology section, with several code listings that demonstrate the basic interfaces.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  3. Abstract Motivation

    Single-cell RNA sequencing (scRNA-seq) has revolutionized biological sciences by revealing genome-wide gene expression levels within individual cells. However, a critical challenge faced by researchers is how to optimize the choices of sequencing platforms, sequencing depths and cell numbers in designing scRNA-seq experiments, so as to balance the exploration of the depth and breadth of transcriptome information.

    Results

    Here we present a flexible and robust simulator, scDesign, the first statistical framework for researchers to quantitatively assess practical scRNA-seq experimental design in the context of differential gene expression analysis. In addition to experimental design, scDesign also assists computational method development by generating high-quality synthetic scRNA-seq datasets under customized experimental settings. In an evaluation based on 17 cell types and 6 different protocols, scDesign outperformed four state-of-the-art scRNA-seq simulation methods and led to rational experimental design. In addition, scDesign demonstrates reproducibility across biological replicates and independent studies. We also discuss the performance of multiple differential expression and dimension reduction methods based on the protocol-dependent scRNA-seq data generated by scDesign. scDesign is expected to be an effective bioinformatic tool that assists rational scRNA-seq experimental design and comparison of scRNA–seq computational methods based on specific research goals.

    Availability and implementation

    We have implemented our method in the R package scDesign, which is freely available at https://github.com/Vivianstats/scDesign.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  4. Abstract Motivation

    Gene regulatory networks (GRNs) of the same organism can be different under different conditions, although the overall network structure may be similar. Understanding the difference in GRNs under different conditions is important to understand condition-specific gene regulation. When gene expression and other relevant data under two different conditions are available, they can be used by an existing network inference algorithm to estimate two GRNs separately, and then to identify the difference between the two GRNs. However, such an approach does not exploit the similarity in two GRNs, and may sacrifice inference accuracy.

    Results

    In this paper, we model GRNs with the structural equation model (SEM) that can integrate gene expression and genetic perturbation data, and develop an algorithm named fused sparse SEM (FSSEM), to jointly infer GRNs under two conditions, and then to identify difference of the two GRNs. Computer simulations demonstrate that the FSSEM algorithm outperforms the approaches that estimate two GRNs separately. Analysis of a dataset of lung cancer and another dataset of gastric cancer with FSSEM inferred differential GRNs in cancer versus normal tissues, whose genes with largest network degrees have been reported to be implicated in tumorigenesis. The FSSEM algorithm provides a valuable tool for joint inference of two GRNs and identification of the differential GRN under two conditions.

    Availability and implementation

    The R package fssemR implementing the FSSEM algorithm is available at https://github.com/Ivis4ml/fssemR.git. It is also available on CRAN.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  5. Abstract Motivation

    Systems immunology leverages recent technological advancements that enable broad profiling of the immune system to better understand the response to infection and vaccination, as well as the dysregulation that occurs in disease. An increasingly common approach to gain insights from these large-scale profiling experiments involves the application of statistical learning methods to predict disease states or the immune response to perturbations. However, the goal of many systems studies is not to maximize accuracy, but rather to gain biological insights. The predictors identified using current approaches can be biologically uninterpretable or present only one of many equally predictive models, leading to a narrow understanding of the underlying biology.

    Results

    Here we show that incorporating prior biological knowledge within a logistic modeling framework by using network-level constraints on transcriptional profiling data significantly improves interpretability. Moreover, incorporating different types of biological knowledge produces models that highlight distinct aspects of the underlying biology, while maintaining predictive accuracy. We propose a new framework, Logistic Multiple Network-constrained Regression (LogMiNeR), and apply it to understand the mechanisms underlying differential responses to influenza vaccination. Although standard logistic regression approaches were predictive, they were minimally interpretable. Incorporating prior knowledge using LogMiNeR led to models that were equally predictive yet highly interpretable. In this context, B cell-specific genes and mTOR signaling were associated with an effective vaccination response in young adults. Overall, our results demonstrate a new paradigm for analyzing high-dimensional immune profiling data in which multiple networks encoding prior knowledge are incorporated to improve model interpretability.

    Availability and implementation

    The R source code described in this article is publicly available at https://bitbucket.org/kleinstein/logminer.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less